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INTERFERENCE OF SMALL STRUCTURES IN THE VICINITY OF LARGE 
STRUCTURES 

Subrata K. Chakrabarti, F. ASCE and Sumita Chakrabarti 

Abstract 

The purpose of this paper is to investigate the effect of large structures in the vicinity of small 
structures in the determination of wave forces on the small structures. The structures considered 
in this study are circular cylinders and analytical expressions are derived. It is shown that if the 
small cylinders are placed in close proximity of large cylinders (center distance/ caisson radius < 
2.0) , the wave forces on the small cylinder are largely influenced by the large cylinder. 

INTRODUCTION 

When large structures placed underwater encounter incoming waves, the waves alter in form in 
the vicinity of the structure. The problem is generally solved as a boundary value problem based 
on a linear velocity potential due to the incident wave. The diffraction effect of large coastal or 
offshore structures in waves is well-known. For an arbitrary shape of the structure the wave 
diffraction effect is solved numerically. For a fixed large caisson, this problem was solved by 
MacCamy and Fuchs (1955) in a closed form for Airy waves. This solution has been extended to 
the second-order wave theory [e.g., Molin ( 1979)]. For large cylinders in the vicinity of one 
another, the problem of multiple cylinder interaction is well-known [Chakrabarti(1978)]. In this 
case multiple diffraction from the neighboring cylinders is taken into account. 

For structures which are placed near each other and are allowed to move independently, the 
problem of multiple radiation is taken into account in addition to multiple diffraction. Several 
research works addressed this problem in the diffraction regime, e.g., Ohkusu (1976). 

The present study addresses the situation in which only one part of the structure is large enough 
to encounter diffraction effect. The other structure dimension is such that its effect on the waves 
is local and its presence has little influence on the large structure. Examples of such applications 
are composite structures, e.g., the Maureen gravity platform in the North Sea and piles in the 
neighborhood of large caisson as shown in Fig. 1. 

In this case, the small structure, such as, the pile, will experience a wave that is a combination of 
the incident wave and the scattered wave from the neighboring large structure. The size of the 
small structure is such that it falls in the Morison force regime in that both the inertia and drag 
effects are important.  
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Two different cases are considered in this study. In the first case, a pile is placed near a large 
caisson. Expressions of the forces on the pile are derived in the presence of the caisson based on 
the MacCamy-Fuchs theory. In the second case, the presence of large multiple cylinders on a 
small diameter member is investigated. Here, multiple scattering effect of waves on the small 
member is considered. An example of this situation may be found in the presence of multi-legged 
gravity offshore structure on risers. 

Analytical solutions are derived for the total velocity potential at a point in the wave field which 
includes the wave scattering effect. The wave kinematics are derived based on this velocity 
potential. The forces on the small member are then expressed in terms of the wave kinematics. 
Numerical results are presented in all cases. Comparisons are made for the forces on the small 
structure with and without the presence of the large structure. In particular, the effect of spacing 
between the large and small structures is shown. The region where the influence of the large 
structure is significant in the design of the small structure is discussed. 

LARGE VERTICAL CYLINDER 

For a large vertical cylinder an analytical solution for the linear diffraction problem has been 
derived by McCamy and Fuchs (1954). In this case the expression for the incident wave is written 
in a convenient cylindrical polar coordinate (Fig. 1). The expression for the total potential at a 
point (r,0 ) in the fluid field is obtained as 

^    //co cosh As A0   ., 

2k sinh kd m=o 
J^-w^H-{tr) cosmB exp(-/a>0   (1) 

in which H= wave height, ca= wave frequency, k= wave number, s= vertical distance from the 
ocean floor, d= water depth, a= caisson radius, and t= time. The quantities Jm and Hm

(1) are the 
Bessel and Hankel functions of the first kind of order m respectively and prime denotes 
derivatives with respect to their arguments. Note that Hm

(1) = Jm + iYm where Ym is the Bessel 
function of the second kind of order m. The value of 8m is 1 form=0 and2form>0. The first term 
inside the bracket corresponds to the incident waves while the contribution of the scattered wave 
from the cylinder surface to the potential function is given by the second term within the bracket 
involving the Hankel function. 

Note that while the above equation is written in complex form for mathematical convenience, only 
the real part of the expression matters. The horizontal water particle velocities are given in terms 
of <I> by 

or 

and 
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150> 
9     7-59 (3) 

Using the expression for C in Eqs. 2 and 3, we have 

•—    cosh ks ^i _ ur=  ... .2^8, 
sinhfe/ ; H• (fa) 

cosm6 exp(-KDf) (4) 

and 

- 1 cosh fa - .m+1 
M9   = — Lm°ml 

kr sinh kd m=0 H• (ka) 
sinmQ exp(-i(ot)(5) 

where bar denotes nondimensional quantities and the velocities are normalized by dividing by the 
quantity (Hco/2). In Cartesian coordinate system the horizontal particle velocity and acceleration 
components at the pile center are 

ux = Ur cos9 - Me sin9 

Uz = ur sinG + M8 COS0 

Ux = -imux 

Uz = -iauz 

(6) 

where the coordinate x is the direction of waves and z normal to this direction. The derivation 
thus far has been carried out in the complex field. However, in order to apply the expressions for 
the kinematics in the Morison force, it is necessary to use the real parts of these quantities. The 
forces on a unit section of the pile in the neighborhood of the single cylinder are computed based 
on these kinematics using the Morison equation. The forces along and transverse to the wave 
direction respectively are 

fx{tot) = -nCM—Re{/«  exp(-;'<o/)}+CD Relx*exp(-toOflRe{w exp(-i'oM)} (7) 
U l        X \ \ \ \     X 

and 

f, {cot) = -nCM —Keliu exp(-j<o/)} + cJReja, exp(-ia>0} Re|« exp(-i'a>/)} (8) 

in which D= pile diameter, CM = inertia coefficient and CD = drag coefficient. The forces in the 
above expressions are nondimentionalized by the quantity 1/2 pD(Ho)/2)2. 
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While the Morison equation in general will not produce a transverse horizontal force on a pile, the 
diffraction effect of the wave from the caisson is expected to introduce a transverse force. 

Note that these expressions do not state anything about the vortex induced lift force as the 
Morison equation fails to describe this phenomenon. The description of the transverse force in this 
case is complicated by the fact that the scattered wave introduces a flow field which has a 
direction different from that of the incident wave and depends on the location of the fluid field. 

It is considered interesting to compare these forces with the forces on the same pile in the absence 
of the large caisson. The force on the pile in the x-direction (Morison force is absent in the z- 
direction) written in the same nondimensional form is expressed as 

/,. -nC, u—usma>t + tnu cos co/cos to? (9) 

where the nondimensional force has the same form as in Eq. 7 and 

«=4 do) 
CO 

This last quantity approaches a value of one in deep water. 

LARGE MULTIPLE CYLINDERS 

Assume that the pile resides in the neighborhood of a multi-legged vertical structure whose legs 
represent large vertical cylinders. The pile experiences multiple diffraction from these cylinders. 
The effect of the waves on the pile, as before, is considered small in developing the theory. 
Considering the interaction of the waves with all large cylinders in the flow field, the total 
potential is described with reference to the coordinate system described at the center of the 5th 
cylinder as 

rj)5 iH& cosh fa 

2k  sinh kd 

X-j„08)exp(/«(e5 -eB+„/2)) 

+4j//11(fci)exp(i#i8i) 
5-1 A oo 

+Q>x )HA:Hn+m{k%)jm{kh) 
£1-1        £1=5 + 1     OT = —00 

exp(wn(0 Sfl - 0 6) exp(m0 ^ ) 

exp(-H»0 (11) 

in which A= total number of large cylinders, 0W= angle of incident wave with respect to the 
positive x-axis, r5, 0s= location of field point with respect to the center of 8th cylinder (see Fig. 
2). For convenience, the center of the coordinate system is located at the center of the caisson 5. 
To numerically compute the potential function, the infinite sums in the above equation are 
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replaced by a finite sum from -N to N where N is the number of symmetric images provided of the 
caisson in question. The first term within the bracket is due to the incident wave, the second term 
arises from the scattering from the reference 8th cylinder and is similar to the MacCamy-Fuchs 
expression. The third series term is due to scattering from the balance of the cylinders in the 
neighborhood where the Bessel's addition theorem has been used to transfer the coordinate 
system to the reference cylinder. 

The expression for G> satisfies Laplaces equation and all boundary conditions except the cylinder 
surface condition. As for the single cylinder, when this condition is applied, a matrix equation in 
the unknown coefficients A„s is derived. 

8-1     N 

Z Z Am H»+m Oi* ) exp(•9 ^ ) J'„ (kah) expO'nO i]/L) + Al„H'_„ (fa*8) 

A N 

+ Z   Z A»> Hn+<„ (fe8„) exp(/m6 ^) J'„ (kas) exp(w9 5(1) 
H=S+lm=-N 

= J:„(fe8)exp(*o8 cos(808 -Om))exp(-i«(-eo) +JC /2)) 

,n = -N N    (12) 

In the above, the higher the value of N, the better is the accuracy in d>6. The order of the matrix is 
given by (2N+1)A. The coefficients A„6 are computed by the matrix inversion. 

Once the velocity potential at a field point, r5, 6s is known, the particle kinematics are computed 
as before from Eqs. 2 and 3 so that the forces on the pile may be obtained from the Morison 
equation. The spatial part of the radial and tangential velocities at the center of the pile (r8, 9s) is 
obtained from 

.cosh fa 
sinh kd 

Z -J' (fej) exP0«(95 - 9„ + K \ 2)) + A\ H'„(krs) exp(«9,) + 

i 

(Z+ Z ) Z4^UKX,(^5)exp(<m(e8(l -gjexp^) 
H=l     n^o+1   m--N 

(13) 

and 

- cosh fa 
kr sinh kd 

Z ~nJ„ (krs) exp(m(9 6 - 8 m + n \ 2)) + nA\ H„ (krs) exp(w9 8) + 
n--N 

(Z+ Z )Z^(-»)».,-(foillV»(^)exp(fei(e.(l -Q^expQnQ^) 
(1 = 1     H = 8 + l    m = -N 

(14) 

It can be shown that for a two cylinder case, the total number of images N=7 provides sufficient 
accuracy (up to 4 significant digits) for forces. For symmetric two caisson/ one pile configuration 
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at right angles to the flow, the last two terms in the radial velocity expression ur
s should provide 

equal values at the pile. This provides a check on the numerical computation. Thus the transverse 
force will be absent in this case as one would expect. 

NUMERICAL RESULTS 

In order to show the effect of a single large caisson on the forces on a pile, numerical values on 
the forces on the pile are computed with and without the presence of the caisson. For this 
comparison the values of the hydrodynamic coefficients are taken as CM=2.0 and CD=1.0. The 
water depth to the caisson radius is taken as l .0 and the forces are computed at the still water 
surface. The pile diameter to the wave height ratio is considered to be 0.25. In deep water this 
corresponds to a Keulegan-Carpenter value of about 12. Three different diffraction parameter 
values ka are chosen: ka=1.0, 2.0, 3.0. The pile is placed at different distances from the center of 
the caisson at 0, 90, and 180 degree orientation. Note that 0 degree corresponds to the pile placed 
behind the caisson with respect to the wave direction, 180 degrees places it in front of the caisson 
while 90 degrees is transverse to the flow. 

The results for ka values of 1.0, 2.0 and 3.0 are shown in Figs. 3-5. The x-axis corresponds to the 
nondimensional distance r/a where r is the distance between the centers of the caisson and the pile 
and a is the caisson radius. The y-axis represents nondimensional force amplitudes on the pile. The 
quantities FX and FZ show forces in the presence of the caisson while FXA is the force in its 
absence. For the 0 and 180 degree cases only the x forces (FX) are presented as one would 
expect. However, for the 90 degree case, there is a force component in the z direction (FZ) as 
well. 

The 0 degree case shows the shielding effect. When the pile is very close to the caisson the x force 
on the pile is small compared to the single pile case. As the pile is moved away from the caisson in 
the 0 degree direction, the x force on the pile increases and approaches in value to the single pile 
forces. This increase is slow and the forces are close to each other at a distance of six radius 
away. 

When the pile is in front of the caisson facing the wave, the force on the pile is affected by the 
oscillating nature of the wave as the pile is moved away. The effect of the caisson here is high 
and is felt by the pile for a long time. Interestingly, the diffracted wave being out of phase with the 
incident wave, the forces experienced by the pile as it is moved away, fluctuates in magnitude, 
sometimes re-inforcing and sometimes canceling the single pile forces. This oscillation frequency 
corresponds to the wave length of the incident (and diffracted) wave. 

When the pile is transverse to the caisson with respect to the wave direction, the wave load on the 
pile is considerably higher than the pile alone case due to closeness of the caisson. As in the 180 
degrees case, the load fluctuates about the pile-alone force as the caisson is moved along the 90 
degree line. The load approaches the pile-alone force with increasing distance. In fact, at a 
distance of about five times the radius, the forces are almost identical. This orientation also 
experiences a transverse load whose magnitude is as much as 25 percent of the single pile load. 
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The transverse load is small in the close proximity of the caisson and grows steadily with distance 
reaching maximum quickly near a distance of two radii. 

As the diffraction parameter is increased in value (equivalent to higher wave frequency), the 
oscillation frequencies at 90 and 180 deg. increase. The normalized forces, however, are higher at 
the lower ka values. 

A second numerical example shown here is the load on a pile in the presence of two large caissons 
symmetrically placed around the pile (Fig. 6). In this case the pile is always assumed to be in the 
center while the distance of the caissons from the pile is varied symmetrically. The normalized x 
and z loads on the pile are plotted in Fig. 7 for a ka value of 2.0. The loads at still water surface as 
before are shown and the values of CM and CD are taken as 2.0 and 1.0 respectively. The other 
values are the same as before. In this case, the transverse force is zero due to the symmetric 
configuration since the forces produced by the caisson no. 1 will be equal and opposite to the 
forces generated due to the presence of caisson no. 2. On the other hand, the x-force is 
considerably higher than the single pile force due to the re-inforcement caused by the caisson pair. 
For example, close to the caissons (r/a near 1.0), the force on the pile is more than twice that of 
the single pile. 

CONCLUDING REMARKS 

Analytical expressions have been derived on forces on piles in the presence of caissons. The 
theory is derived for a pile near a single caisson as well as near multiple caissons. Numerical 
values are given for several examples, including pile near a single caisson, and pile in the center of 
a caisson pair. Results show that the force is influenced by the presence of the caisson for r/a < 
2.0. A transverse force is generated for a single caisson case at 90 deg. due to diffraction of 
waves. Multiple caisson interaction with the pile is more pronounced. Many offshore and coastal 
structures include the geometry presented in the above examples, e.g., Maureen Gravity Platform, 
Risers on Tension Leg Platforms, etc. where this interaction may be important. 
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Fig. 1   Definition Sketch for Single Caisson Fig. 2  Definition Sketch for Multiple caisson 

Fig. 3 Forces on Pile with and without Single      Fig. 4 Forces on Pile with and without Single 
Caisson ~ ka=l .0 Caisson — ka=2.0 
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Fig. 5  Forces on Pile with and without Single     pig. 6  Example Problem -- Pile in the Center 
Caisson -- ka=3.0 of Two Caissons 
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Fig. 7  Forces on Pile with and without Two Caissons — ka=2.0 


