
CHAPTER 15 

Modelling Post-Wave Breaking Turbulence and Vorticity. 

T.C.D.Barnes, M.Brocchini,* D.H.Peregrine * and P.K.Stansby§ 

1. Abstract 

A brief review is given of the initial development of two approaches to the mod- 
elling of the flow that occurs after a water wave breaks. The first approach aims 
to model the turbulence generated by a spilling breaker riding on an unsteady 
wave. The turbulent volume of water in a spiller is modelled as a thin layer. 

The second approach is applied to model the region of strong vorticity gen- 
erated by a plunging breaker. The vorticity is modelled using two-dimensional 
discrete vortices. The behaviour of both a single vortex and a 'cloud' of vortices 
near a free surface is described. 

2. Introduction 

Water wave breakers, whether in deep or shallow water are mainly categorized 
as spilling or plunging breakers with no clear distinction between them. In par- 
ticular intermediate types certainly exist, where there is a small initial plunging 
event which initiates tumbling white water as in a spiller. The strongly vortical 
and turbulent flow which results from all types of breaker is the interest of our 
studies. We distinguish between the turbulence and the vorticity of the mean 
flow. For example, a plunging breaker frequently creates a strong vortical flow 
about a horizontal axis. First steps in using discrete vortices in a two-dimensional 
model with a fully nonlinear free surface are described in the second part of this 
paper. The first section describes the modelling of a thin layer of turbulence in 
a spilling breaker. 
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3. Turbulence and vorticity in a spilling breaking wave 

In their analysis of spilling breakers, bores and hydraulic jumps Peregrine & 
Svendsen (1978) suggested that the volume of turbulent flow in a spilling breaker 
resembles a turbulent mixing layer. The roller model in which the turbulent 
region is modeled as a separate flow region passively riding the wave crest is seen 
to be only a partial solution as it is evident that the fluid content of the roller 
itself is continually mixing with the rest of the turbulent fluid in the wave. 

Peregrine (1992) also suggests that a spilling breaker may be considered as 
a quasi-steady system in a frame of reference moving with the wave where de- 
formations of the spiller shape occur at longer time scales than those typical 
of the motion of water through the turbulent region. The structure of such a 
quasi-steady breaker is thus an initial mixing layer region, followed by a region 
beneath the crest of the wave where gravity influences and restrains the turbulent 
motions near the surface. 

This view leads to consideration of a turbulent layer where turbulence is 
generated at the leading edge (toe of the wave) by shear stresses due to the 
relative motion between the turbulent wave surface and the water in which the 
wave propagates. Turbulence, generated near the free surface, propagates within 
the body of the wave and the turbulent layer evolves from a mixing layer type 
flow near the leading edge towards a wake type flow where most of the turbulent 
kinetic energy is dissipated. 

This scenario is now documented for a small, quasi-steady spilling breaker, a 
recent experimental analysis of which is given by Lin & Rockwell (1995). It is 
found that the breaker originates from a region where the free surface abruptly 
changes slope (toe of the wave). The magnitude of the velocity is virtually 
unaltered until the abrupt onset of curvature of the free surface is encountered. 
At this location, there is a drastic nearly discontinuous reduction in magnitude of 
the velocity. The change in the velocity field is accompanied by a sudden increase 
in elevation of the free surface and represents an abrupt transformation from an 
undisturbed, essentially uniform velocity field to a very low velocity separated 
region existing beneath the free surface. The essentially discontinuous slope of 
the surface, in the presence of flow separation beneath it, serves as a source of 
vorticity giving rise to vorticity concentrations in a separated mixing layer, or 
shear layer. 

We report on modelling of an unsteady thin turbulent layer (to be used in 
the modelling of a spilling breaking wave). One of the main assumptions is that 
the vertical extent of turbulent flow is much smaller than its streamwise extent. 
The motion of the wave is to be modelled by any suitable model for irrotational 
flows (e.g. boundary integral method) while the turbulent region of the breaker 
is modelled by a simplified k — e model for a thin layer of fluid similar to that 
of Madsen & Svendsen (1983). The main new features of the present model are 
concerned with the correct representation of stretching, curvature, acceleration 
and local rotation that the layer of turbulent flow undergoes. Particular care has 
been put in analyzing the effects of curvature on the turbulent flow in the thin 
layer. 

In figure 1 the global geometry of the present model for a spilling breaking 
wave is shown. Two regions of turbulent flow are identified. The 'surface layer' 
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Figure 1: Global geometry adopted in the model for the system wave - turbulent 
thin layer - surface layer. Frame of video taken at the Fluid Dynamics unit of 
the University of Edinburgh. 

region represents that portion of the turbulent thin layer where the instantaneous 
free surface fluctuates around the mean free surface. When turbulent eddies 
cause the interface to splash into the air phase a situation occurs in which space 
is occupied by two substances which have different properties (e.g. air and water) 
and can be distinguished from each other (Brocchini & Peregrine, 1997a). Thus, 
the flow is essentially a two-phase flow. Beneath the 'surface layer' a second layer 
is found where the flow is still turbulent but single-phase (water). A summary 
on the modelling of the single-phase turbulent thin layer follows. 

Brocchini & Peregrine (1997a) analyses in detail the boundary conditions 
for a turbulent air-water mixture ('surface layer') occurring at a splashing free 
surface. In order to obtain conditioned equations for each phase (i.e. air and 
water) a phase function or intermittency function is introduced such that 

/(x,t) 
1   probe at x is in the water at time t 
0   probe at x is in the air at time t. (1) 

An integral method has been used to assess the flow equation for the water phase. 
Exact boundary conditions have been obtained by integrating in the crossflow 
direction the equations for the water flow. These boundary conditions are com- 
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plicated and cannot be directly used in simple turbulence models (e.g. k — e) 
because they are written in terms of the flow properties in the water phase rather 
than in terms of the ordinary mean flow variables. Approximations and closure 
assumptions are made to obtain simpler approximate boundary conditions for 
use in the modelling of the spilling breaker. The intermittency factor 

</(x,t)) = 7(x,t) (2) 

is the ensemble average of 7(x, t) and is the most important statistical parameter 
to characterize a specific surface layer. Thus, closure is based on a suitable 
definition for 7 for each flow regime (see figure 2). 
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Figure 2: The intermittency factor (or residence time) 7 for: (a) wavy air-water 
interface (dashed line), (b) periodically scarified interface (dot-dashed line) and 
(c) turbulent splashing interface (solid line). 

Since the main aim of the modelling is to correctly represent the stretch- 
ing, curvature, acceleration and local rotation that the layer of turbulent flow 
undergoes we use the tools of curvilinear tensor analysis to derive the flow equa- 
tions and derive a more general version of Svendsen & Madsen, (1984) thin, 
hydrostatic layer for a shallow water flow. Here the underlying irrotational wave 
motion is supposed to be modelled by an accurate flow solver, such as that of 
Dold & Peregrine (1986), modified to use the following thin layer equations as a 
boundary condition. 

We start from Euler's equation for a Newtonian, incompressible, perfect fluid 
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of constant density p: 
Dili p-m =pFi (3) 

where the comma refers to partial covariant differentiation. The left hand side of 
this equation contains the total derivative of the flow velocity. The two contri- 
butions on the right hand side are due to the external forces (here only gravity) 
and to the pressure p. A set of two-dimensional orthogonal coordinates (£1,62) 
is defined as follows (Moore, 1978). 

Consider a smooth time-dependent two-dimensional curve T(t) (see Figure 
3) given parametrically by the equation 

r = R(a, t) (4) 

where t is time and a is an arbitrary parameter. The curve T(t) represents 
either the wave free surface when no breaking occurs or an interface between the 
irrotational flow region (below) and the region containing turbulent flow (above). 
Due to the typical entrainment of irrotational flow into the region of turbulence 
the curve T(i) is not a material surface when turbulence is present, i.e. water 
particles which at time t = to are on the surface T(t) at a later time t = t\ will 
not be on the surface any more. 

X 

Figure 3: Definitions for geometry and coordinates used for the thin turbulent 
layer. 

With each "convected point" Oi(a(s),t) of the curve we associate a unit 
tangent vector s(a(s),t) to the curve defined by 

. _dR dR _ ds_dR _ 9s. 
ds da      da ds      da (5) 
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and also a unit normal vector n(a(s),i). For the sake of simplicity much of 
the following analysis is carried out by referring differential quantities to the arc 
length s rather than to the convected coordinate a, hence the position of each 
convected point Oi(s,t) in the fixed frame of reference OXY is: 

r = R(s,i). (6) 

For any general point P, which is in the turbulent layer (i.e. above T) we 
assume that it is close enough to T that there is only one normal to the curve 
passing through OL towards P and the distance OLP = n is also defined. This 
is positive if P is on the left hand side of T when this is described in the s- 
increasing direction (i.e. above T). Moreover the position of the point P within 
the thin layer is determined by two coordinates £x = s, £2 = n which form a 
mobile curvilinear coordinate system. 

With this convention the position of P in OXY is : 

rP(s, n, t) = R(s, t) + n(s, t)r (7) 

The metric tensor g^ can be identified more clearly by analysing the infinitesimal 
distance between two points P and Q and is: 

= dr • dr = (1 - ren) W + dn2 = gfjd^d^ (8) 

where re is the local curvature. 
The model comprises four equations for the mean flow. Mean flow variables 

are in capital letters (e.g. U, V, P) while turbulent fluctuations are in lower case 
(e.g. u,v). A first equation states the conservation of mass: 

dU      d r/i ,T/1        dfl 
- + -[(l-Kn)V] = n-. (9) 

Here two extra terms due to the angular velocity ft and to the curvature re 
influence the mean motion. 

The two equations for the conservation of momentum in the streamwise and 
crossflow direction are respectively: 

dU 
(1 -ren)—+ (1- ren) T,     . 9R\ dU     d(uv) 

V + n 1—-—- 
dt I dn        dn 

+ ^- - 2K{UV)    (10) 

,   (TT  ,  - dR        n\ (dU dn        TA       /, x A/o      d(n^)      -A     IdP 
+ ^ + s.--n^^--n--re1/j=(l-ren)^ + ^ + s.gj---; 

and 

dv  . dndv  idv2 d(v2)      i    ^dRfdv      \   (u-nn)fdv 
ot        dt an    2 an       an      (1 - ren)    at  \ds J     (1 - ren) \ ds 

+   i_d_M + ^)-(v2))=nn2_mi_dP 
(1 - ren)    ds (1 - ren) p dn 

(11) 
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where (.) is the average operator and g is the 'reduced' gravity factor 

g =g- 
d2R 
dt2 • 

(12) 

The above are the Reynolds' equations for our two-dimensional mean flow. 
As usual Reynolds' decomposition of non-linear convective terms introduces 
Reynolds' stress terms (UJU,-) and isolates the effects of fluctuations on the mean 
flow. 

These equations resemble the equations used in the modelling of a curved 
thin layer of turbulence (e.g. Gibson & Rodi, 1981). One of the main differences 
is that in the present case there is interactive coupling (through dR/dt and g ) 
between the motion of the thin layer of turbulence and that of the irrotational 
wave below. 

Finally, modelling of the turbulence may be achieved by means of a simplified 
k — e model in which a first order closure is adopted such that we only solve a 
transport equations for the turbulent kinetic energy k: 

dk 
~di+T\ 

1 
KTl) 

U + s- 
dR 
~dt 

nil 
dk 

ds~ 
„     - dR dk 

dn 
1 d 

1 

<%N 

Vf. )2 ds \    ds 

9  (   dk\    .. ,.     . 2\\9V        (uv) ^9C/       dV 
-e. (13) 

Here e and vt are respectively the energy dissipation and the eddy viscosity such 
that: 

e « ——,      and     ut « — (14) 
o e 

where S is the thickness of the turbulent layer. 
Modelling the dynamics of the thin layer of turbulence provides suitable 

boundary conditions for the irrotational flow of the wave. The turbulence/wave 
interaction occurring at lower boundary (n = 0) of the turbulent layer is repre- 
sented by mass entrainment across the boundary and by extra pressure at the 
boundary. These extra terms are to be incorporated respectively in the kinematic 
and in the dynamic boundary condition for the irrotational wave along T(t). For 
example the kinematic boundary condition for the irrotational wave is: 

dR 
"dt 
dR 

"dt 

+ 9s 
dt 
d_$_ 

dn 

(1 — KTI) ds 

+ V 

(15) 

(16) 

where <j) is the velocity potential for the irrotational flow and V is the 'entrainment 
velocity' i.e. the velocity at which the turbulent layer entrains irrotational flow 
across the boundary n = 0. Increasing entrainment is such that the interface 
T(t) is lowered. The velocity V is parameterized in terms of the local amount of 
turbulence in the thin layer. 

We refer to Brocchini (1996) and Brocchini & Peregrine (1997b) for a detailed 
description of the derivation of the model equations. 
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4. Modelling of Waves and Concentrated Vorticity 

For large organised vortical motions that are generated by plunging breakers, we 
add point vortices to the two-dimensional fully nonlinear free surface boundary 
integral solver for irrotational flow described by Cooker et al (1990). The nu- 
merical model solves the following equations, the usual equations for inviscid, 
incompressible and irrotational potential flow with the full nonlinear boundary 
conditions: 

v2$ = =   0 in  fluid — {x"} 

Dx 

~Dt 
= v$ on  free  surface 

Dt 
= !|v$|2- -gy on free  surface 

(17) 

<9$ 

dn 
=   0 on  solid  boundaries 

where x = (x,y), $(x, t) is the velocity potential and g is the acceleration due 
to gravity. The velocity potential, $ is composed of a regular part <f>r and a 
singular part <f>s. The singular part is due to a system of point vortices, centres 
{x^} while the regular part is due to the free surface. The potential due to a 
single point vortex is augmented by its images in both the bed (y = —h) and the 
line y — h above the free surface, which gives the following expression 

0S   =   K(tan-1[coth[s(x - x°(t))] tan[s(y - y"(£))]] 
(18) 

- tan"1[coth[s(a; - xv{t))] tsm[s{y + yv(t) + 2h)]]) 

where s = n/Ah, (xv'(£), yv'(£)) is the position of the point vortex and K its 
strength. The extra images are helpful in giving a singular solution which decays 
rapidly in space. The circulation around the point vortex is then T = 2TTK, 
F > 0 denotes circulation in the counter-clockwise direction. We define a Froude 
number Fr = K,/J(gL3) where L is some characteristic length scale, usually the 
distance of a vortex from the free surface. The system is non-dimensionalised 
with g and L, all results presented are dimensionless. 

Tong (1991) computed the evolution of a single point vortex as it interacted 
with a free surface. He used the two dimensional fully nonlinear free surface 
potential flow numerical solver which solves the equations shown to model the 
free surface deformation (Cooker et al 1990). A single point vortex modelling 
the effect of vorticity, moving under the effect of its images and the free surface. 
We have extended the method to include a system of point vortices in order to 
model the effect of larger regions of vorticity. 

In the extended model each point vortex moves under the influence of the 
free surface, the other vortices and its images. The free surface moves under the 
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Figure 4: Stacked free surface deformation due to a single (solid) and 10 (dashed) 
vortices. 

influence of the vortices and gravity. The numerical method which we use time- 
steps the free surface using a Taylor series expansion truncated at the sixth power 
of the time-step. The inclusion of the point vortices necessitates the computation 
of every partial derivative of the vortex potential in every combination of x, y 
and t up to the third derivative in order to maintain the accuracy of the scheme. 
The time step criterion must also be modified to include the vortices, as velocities 
are very high close to the singular core of a point vortex. 

We present some preliminary results here: figure 4 shows the free surface 
deformation and vortex movement due to a single impulsively started vortex 
(dotted) with strength K = 0.5 initial position (0.5, —1), and due to a system of 
10 vortices whose strengths are all constant, positive and sum to 0.5, initially 
grouped around (0.5, —1). 

We can see that the two cases are remarkably similar, and give us some hope 
that the point approximation can model patches of vorticity well. Clearly a very 
diffuse patch of vorticity will not be well modelled by a point vortex. Our model 
will allow us to define the limits within which a single point vortex is sufficient 
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Figure 5: Stacked free surface deformation due to a single (solid) and 10 (dashed) 
vortices. 

to model the free surface deformation due to a patch of vorticity. 
We define the centre of the patch of vorticity to be the centroid of vorticity, 

Then the radius of the patch of vorticity is the point defined by X" =   y*'*' 

defined as Rv These definitions are also useful when defining 

centres and radii of patches of vorticity in experiments. 
Figure 4 also shows the individual vortex paths. The thin lines are the paths 

of the system of 10 vortices, we can see that they co-rotate under their mutual 
influence, and drift under the influence of the free-surface. The thick line is the 
path of the single vortex and the centroid of the 10 vortices, which are virtually 
indistinguishable. 

If the patch of vortices are sufficiently diffuse then there are variations from 
the behaviour in the single vortex case. Figure 5 shows such a case, where the 
free surface deformation is clearly different in the two cases. However similarities 
still exist, just outside the limits of the plot the free surface deformation is very 
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Figure 6:   Path of single (solid), five (dashed) and ten (dotted) vortices sum 
strength 0.1 

similar. Also the centre of the system of vortices and the single vortex still move 
along almost the same path, the thick line. 

In certain cases the free surface deformation due to a patch of vorticity and a 
point vortex appear to be fairly similar. In such cases another interesting feature 
to study is the longer time evolution of a patch of vorticity which does not induce 
surface breaking. If the patch is modelled with a single point vortex then, for 
sufficiently weak vortices, the vortex moves as it would under a rigid wall. The 
image required to satisfy the rigid wall boundary condition predicts a vortex core 
velocity of (—K/2L,0) for a point vortex located at (x, — L). Individual point 
vortices in a patch of vorticity moving under the influence of the free surface 
alone will move with different velocities resulting in a diffusion of vorticity. So 
their interaction with each other and the free surface will determine the evolution 
of the patch of vorticity. 

The solid line graphs in figure 6 show the paths of a single point vortex, 
strength K = 0.1, initial position (0,-1). After an initial transient period the 
vortex settles down to a constant x-velocity —0.049 with a small varying y- 
velocity, the rigid wall theory predicts a velocity of (—0.05,0). Note that the 
vortex takes some time to reach a steady state, initially sitting almost still. This 
is in qualitative agreement with the behaviour of vortices which we see in our 
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experiments (Quinn et al 1995 and Haydon et al 1996), which appear to take 
some time to start moving after being left by a plunging breaker. 

The dotted and dashed path superimposed on figure 6 show the paths of the 
centres of systems of five and ten point vortices whose strengths sum to 0.1. We 
note that even the very small y-variations are fairly similar for all three cases. 
The radius of the patches is plotted in figure 7. 

0.25 

0.20 

°   0.15 

0.10 

0.05 

Figure 7:  Radius of the patches in figure 6, five vortices (solid), ten vortices 
(dashed). 

More importantly the free-surface generated in these three cases is also very 
similar, and rather complicated. It is also worth noting that the computations all 
fail at similar times due to a lack of points caused by a stretching of part of the 
free surface. This can be overcome by a invoking a regridding procedure, we halt 
the computation at this point as it seems unlikely to yield any more interesting 
results. 

Finally, we include the variation in the radius of the vortex cloud. Figure 7 
shows the variation in the radius of the vortex clouds for the present example. We 
see that the cloud becomes steadily more diffuse, behaviour which is replicated 
in all cases which we have tried. 

5. Conclusions 

The work described in this paper continues. The thin layer model of a spilling 
breaker is being developed to add to boundary integral methods. The detailed 
analysis of the toe of the spiller is still in progress. 

The discrete vortex system under a free surface is demonstrated to be prac- 
ticable and may be of value for problems other than plunging breakers. For 
example the flows over many structures result in vortex shedding, which could 
be well described using the present methods. 
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