
CHAPTER 8 

BOUSSINESQ TYPE EQUATIONS 
WITH HIGH ACCURACY IN DISPERSION AND NONLINEARITY 

P.A. Madsen , B. Banijamali*, H.A. Schaffer  and O.R. S0rensen 

Abstract 

Two sets of Boussinesq type equations with high accuracy in dispersion as 
well as in nonlinearity are presented. The first set, which is expressed in terms of 
the depth-averaged velocity, includes up to fifth-derivative terms in the momentum 
equation, while the second set, which is expressed in terms of the velocity at an 
arbitrary z-level, includes up to third-derivative terms in the continuity equation as 
well as in the momentum equation. Both sets of equations provide linear dispersion 
characteristics, which are accurate for wave numbers (kh) up to 6, and nonlinear 
characteristics which are superior to previous Boussinesq formulations. The high 
quality of dispersion is also achieved for the Doppler shift in connection with 
wave-current interaction. A numerical model based on the new equations in two 
horizontal dimensions is presented and verified with respect to nonlinear trans- 
formation of waves in shallow water and refraction-diffraction in deep and shallow 
water. 

1. Introduction 

The classical Boussinesq equations as formulated by e.g. Peregrine (1967) are 
known to incorporate only weak dispersion and weak nonlinearity. For many 
applications the weak dispersion is the most critical limitation and it has achieved 
considerable attention in the last 5 years, where a number of alternative lower 
order Boussinesq type equations have been presented with the purpose of improv- 
ing the linear dispersion characteristics (see e.g. Madsen et al., 1991; Nwogu, 
1993; Schaffer and Madsen, 1995). It has been demonstrated that the accuracy of 
the dispersion for larger wave numbers is sensitive to the choice of velocity equa- 
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tions, and with minor modifications the lower order Boussinesq type equations can 
incorporate significantly improved dispersion characteristics. A similar improve- 
ment of the nonlinear properties is more difficult to obtain and will be adressed in 
this work. 

This paper presents two sets of Boussinesq type equations with high accuracy 
in dispersion (n) as well as in nonlinearity (e). The first set, which is expressed in 
terms of the depth-averaged velocity, includes dispersive terms of order // and 
nonlinear terms up to order e5// (Chapter 3). The second set, which is expressed 
in terms of the velocity at an arbitrary z-level, includes dispersive terms of order 
ju2 and nonlinear terms up to order e3/*2 (Chapter 4). Using the technique suggested 
by Madsen et al. (1991) and Schaffer and Madsen (1995) we enhance the new 
equations and obtain excellent linear dispersion characteristics corresponding to a 
Pade [4,4] expansion of linear Stokes theory. A Fourier analysis also demonstrates 
that the accuracy of the nonlinear energy transfer is improved considerably com- 
pared to previous Boussinesq formulations. This allows for a much more accurate 
description of wave-wave interactions in irregular wave trains. Finally, it turns out 
that the high quality of dispersion is also achieved for the Doppler shift in connec- 
tion with wave-current interaction and it allows for a study of wave-blocking due 
to opposing currents. These aspects will be studied in a companion paper at this 
conference by Chen et al. (1996). 

A numerical model based on the new equations from Chapter 4 is presented 
in Chapter 5 and it is verified with respect to nonlinear transformation of waves in 
shallow water and refraction-diffraction in deep and shallow water. 

2. Derivation of Boussinesq type equations 

In the following presentation the adopted coordinate system is Cartesian with 
the x'-axis and y'-axis located at the still water level (SWL) and with the z'-axis 
pointing vertically upwards. The fluid domain is bounded by the sea bed at z'=- 
h'(x',y') and the free surface at z'=ij'(x',y',t')- Non-dimensional variables 
(denoted without primes) are introduced in the conventional way (see e.g. Nwogu, 
1993) by the use of a characteristic water depth (hg), wave length (10) and wave 
amplitude (a0) and we introduce the classical measures of nonlinearity and fre- 
quency dispersion by 6=80/110 and ^=ho/l0. 

With the usual assumptions of irrotational flow in an incompressible fluid, 
the nondimensional form of the governing equations and boundary conditions read: 

*a + H2V2<I> = 0 ,   -/t<z<en (la) 

$z + (i2V7rV$ = 0 ,   z = -h (lb) 
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*z - l*2^* + €VT
1 '

V
*) 

= ° >   z = er\ (ld) 

where $ is the velocity potential and V the horizontal gradient operator. 
The basic idea in Boussinesq-type derivations is to reduce the three dimensional 

description to a two-dimensional one and this is achieved by expanding the velocity 
potential as a power series in the vertical coordinate: 

Q(x,y,z,t) = 2 zn&n)(x,y,i) (2) 

by which <£(°)(x,y,t)=$(x,y,0,t). While traditional Boussinesq theory assumes 
H< <1 and e=0(n2), the present expansion allows for arbitrary e. 

The individual steps in the derivation of Boussinesq-type equations are as 
follows: Firstly, the velocity potential is determined in terms of spatial derivatives 
of $(°) by combining (2) with (la) and (lb). By the use of the gradient operator 
this also defines the horizontal velocity vector in terms of the velocity, u at the still 
water level. Secondly, the velocity potential is inserted in the dynamic free surface 
condition (lc), and by using the horizontal gradient operator a momentum equation 
is derived in terms of u. Thirdly, the horizontal velocity vector expressed in terms 
of u is substituted into the depth-integrated continuity equation. The resulting 
equations in terms of u can be found in Madsen & Schaffer (1996) and will not be 
given here. 

3. Equations in terms of the Depth-Averaged Velocity 

Traditionally, Boussinesq models are not based on equations formulated in 
terms of the velocity at the still water level. This is partly because of the rather 
complicated form of the continuity equation expressed in this variable and partly 
because of the relatively poor dispersion characteristics of these equations. A more 
common choice is the depth-averaged velocity U which is defined by 

i     £n 

U = —— fudz 
h+en "V (3) 

One of the obvious advantages of using this variable is that the continuity equation 
becomes exact and relatively simple, 
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t), + V-((h + er\)U) =0 (4) 

3.1. Formulation of momentum equations 

In order to formulate the momentum equation in terms of U we use the 
procedure as follows: Firstly, a relation in which U is expressed in terms of u is 
established by the use of (2) and (3). Secondly, this relation is inverted into a 
relation in which u is expressed in terms of U, by the use of successive substitu- 
tions starting at lowest order in n2. Now u can be eliminated from the momentum 
equation and replaced by functions of U. The resulting higher order momentum 
equations truncated at the order \ft take the form of 

Ut + vn + -V(tf2) + n2r£ + u.4r4 = 0(u6) (5) 

where 

r2   =  [A20   +   eA21   +  £2A22   +  ^A^] (6a) 

r7 = [A7
40 + eA7

41 + e2A7
42 + e% + e'A7* + e5A'45] (6b) 

Notice that Amn is used to express the Boussinesq terms, where subscript m 
accounts for the power of fi (dispersion) and subscript n for the power of e (non- 
linearity). The equations include full nonlinearity up to the truncated order of 
dispersion, i.e. retaining e3/*2 and e5//-terms, and involve higher order spatial 
derivatives incl. third and fifth-derivative terms. The actual expressions for the 
A^ -terms can be found in Madsen & Schaffer (1996) and will not be given here. 

We note that if only terms up to the order 0(e,^2) are retained we obtain the 
classical Boussinesq equations by Peregrine (1967) and if terms of order 0(e^2,ju4) 
are retained as well we obtain the higher order Boussinesq equations by Dingemans 
(1973). 

The final step in the derivation procedure is to apply the technique introduced 
by Madsen et al. (1991) and Schaffer & Madsen (1995) for improving the dis- 
persion characteristics of (4) and (5). This procedure is illustrated on a horizontal 
bottom in the following: Firstly, (5) is truncated omitting 0(/^4), the gradient 
operator is applied twice and the result is multiplied by a/rh2, where a is a free 
parameter of the order 0(1): 

ecu.2 h2V2(ut + Vn + -V(tf2) + u.2r7
2] = 0(u6) (7a) 
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Secondly, (5) is truncated omitting 0(ii2), the gradient operator is applied four 
times and the result is multiplied by /?/i4h4, where /? is a free parameter of the 
order 0(1): 

Pu4/*4V4(Vf + Vn + £V(172)] = 0(u6) (7b) 

We can now consistently modify (5) by subtracting (7a) and adding (7b), which 
yields an enhanced set of higher order Boussinesq equations truncated at 0(it6). 
The coefficients a and /? are yet to be determined. 

3.2. Fourier Analysis for weakly nonlinear waves 

Although the equations have been derived under the assumption of /x < < 1 and 
e=0(l), we shall analyse the imbedded linear and nonlinear characteristics by 
assuming that e<l while it is arbitrary. We look for analytical solutions of the 
form 

r) = a^cosidit-kx) + ea2cos(2u>t -2kx) /o„\ 

U = U^osiwt-kx) + eU2cos(2wt-2kx) /^N 

At first order (e°) non-trivial solutions require the dispersion relation 

o2  =  1 + a!c2h2 + pk*h4 

2h      l+fa+lW+fP+|-±W ** 1J.L4.iU2*24.fo4.«_ ±)u4u4 (9) 

which should be compared with Stokes relation for linear waves on arbitrary depth, 
i.e. tanh(kh)/kh. The ratio between the two expressions is shown as a function of 
kh in Fig 1. If we omit the enhancement of the higher order equations using 
(a,iS)=(0,0) the resulting dispersion relation (9) corresponds to a Pade [0,4] 
expansion in kh of the Stokes relation. For these equations the deviation is 
significant and in fact a singularity occurs for kh=4.2. This singularity shows up 
in numerical calculations as an instability even in the case of initially calm water, 
and actually makes (5) quite useless without the enhancement. On the other hand, 
by using the enhanced equations incl. (7a-b) with a=1/9 and /3=1/945 the result- 
ing dispersion relation (9) corresponds to a Pade [4,4] expansion. This is an 
extremely good approximation to the exact linear relation even for kh as large as 
6. The dispersion relation of lower order Boussinesq equations is obtained by 
ignoring the k4h4 terms in (9). With a=0 (Pade [0,2]) this corresponds to the 
classical equations of Peregrine (1967) and with a=1/15 it corresponds to the Pade 
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[2,2] formulation introduced by Madsen et al. (1991). Both cases are shown as a 
reference in Fig 1. 
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Fig 1       Relative phase celerity, c/cStokes, for various forms of the Boussinesq 
equations.   1: Pade [0,2]; 2: Pade [2,2]; 3: Pade [0,4]; 4: Pade [4,4]. 

Extending the Fourier analysis to second order we determine a2 in terms of 
a^/h times a transfer function. In this respect the target solution is 

stoi^ = i_Lfc/,coth(fcA)(3coth2(jUt)-l) 
4 h 

(10) 

according to Stokes second order theory. Fig 2 shows the variation of a2/a2Stokes 

as a function of kh. The curve corresponding to the new higher order equations is 
seen to be superior to the results obtained from the equations of Dingemans (1973) 
and Peregrine (1967). 

It is straight-forward to extend the Fourier analysis to second order sub- 
harmonics and super-harmonics and the results can be found in Madsen and 
Schaffer (1996). 
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Fig 2 Ratio of second harmonic, a2/a2
Stokes.   1: Peregrine (1967); 

2: Dingemans (1973)   3: Present e.g. eqs. (4) & (5) with (7a-b), 
a = l/9, (8 = 1/945. 

3.3 Ambient currents and Doppler shift 

Yoon and Liu (1989) introduced separate scaling of waves and currents and showed 
that additional terms were to be added to the classical formulation of Peregrine 
(1967) if a correct Doppler shift was to be obtained in connection with ambient 
currents. In the present work we analyse the new equations for the case of a strong 
but constant ambient current Uc and obtain the following dispersion relation, 

{a-kUcf 

k2h 
1 + ak2h2 + Pit4/i 41,4 

1 + U+-\k2h t-i 45 
41,4 k*h 

(11) 

This provides a correct Doppler shift including Pade [4,4] dispersion character- 
istics. Fig. 3 shows lines of 2 per cent wave number errors as a function of (F, 
h/L0), F being the Froude number (UcA/gh) of the current and L0 being the deep 
water wave length for the case of no currents. The application range of the Pade 
[4,4] curve is seen to be superior to the Pade [0,2] corresponding to Yoon & Liu's 
formulation as shown for comparison. 



102 COASTAL ENGINEERING 1996 

0.0 

-0.2 

-0.4 

u_ 
-0.6 

-0.8 

•1.0 

X 3 

0.0 0.1 0.2 0.3 

h/L0 

0.4 0.5 

Fig 3       Waves on ambient currents.    1: Blocking curve according to Stokes 
theory. Tracks of 2 per cent wave number errors, (k-kStokes)/kStokes: 
2: Yoon & Liu (1989), Pade [0,2];  3: New equations (11), Pade [4,4] 

4. Equations in terms of the velocity at an arbitrary z-location 

In the previous section we have demonstrated that highly accurate linear dispersion 
and nonlinear characteristics can be obtained by formulating higher order equations 
including up to fifth-derivative terms in the momentum equation. In this section we 
shall, however, show that almost the same accuracy can be obtained with only 
third-derivative terms, if the lower order equations are formulated in terms of the 
velocity vector at an arbitrary z-location i.e. 

u = u(x,y,z,t) (12) 

This variable was introduced by Nwogu (1993). 
From the expression derived for the velocity potential we can establish an 

expression for u in terms of u. This relation is then inverted into a relation in 
which u is expressed in terms of u, by the use of successive substitutions starting 
at lowest order in \?. Now u can be eliminated from the original mass and momen- 
tum equations and replaced by functions of u and the resulting equations truncated 
at the order // take the form of 

r>, + V-(fi(* + eti) + n2I?) = 0(u4) (13a) 
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ut + Vn + -V(u2) + |i2rf = 0(n4) (13b) 

where 

r2
7/ = [A"20 + eA7^ + e^ + e3A2'3] (14a) 

T2   = [A20 + eA21+e2A22+e3A23j (14b) 

These equations, which were first derived by Wei et al. (1995), include full 
nonlinearity up to the truncated order of dispersion i.e. retaining e3fi2. If only 
terms up to the order 0{e,y?) are retained we obtain the equations of Nwogu 
(1993). With a specific choice of the z-location defining the velocity variable, 
Nwogu and Wei et al. achieved Pade [2,2] dispersion characteristics. 

Here we shall further enhance the equations (13a-b) to improve dispersion as 
well as nonlinearity. Again we apply the technique as described in section 3 and 
illustrate the procedure on a horizontal bottom: Firstly, (13a & b) are truncated 
omitting 0(m2), the gradient operator is applied twice and the results are multiplied 
by ix2h2 and two free parameters (a,0) which are of the order 0(1): 

au2/r2V2[a, + Vn + 1V(«2)] = 0(u4) (15a) 

PU
2
A

2
V

2
(TI, + V-(fi(A+eTi))) = (Ku4) (15b) 

We can now consistently modify (13a-b) by subtracting (15a-b), which yields an 
enhanced set of lower order Boussinesq equations. The detailed formulation is 
given in Madsen & Schaffer (1996). 

The linear dispersion relation of the enhanced equations reads 

a 
1 V2l,2    ,    J a _„_A It4fc4 

."1 = I 3j V V (16) 
k2h 1 + (a + p-y)k2h2 + p(a-y)k4h4 

where 

Y = £+!(if (17) 
h   2[h 

As shown by Schaffer & Madsen (1995) Pade [4,4] characteristics can be obtained 
by choosing one of four different sets of parameters. It turns out that one of these 
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sets is superior with respect to nonlinear properties, hence we recommend the 
parameter set 

"        ~      ' (18) 
18 

,   ft   ,     f-3-V23/35-2Vl9/7     28-2^133     105-3^/805 
(y,P,«) - .„ • -126       ' -1M0 

Extending the Fourier analysis to second order we determine a2 in terms of 
aj2/h times a transfer function. Fig 4 shows the variation of a2/a2Stokes as a func- 
tion of kh. We notice that the curve corresponding to the new enhanced equations 
is superior to the results obtained from Nwogu's and Wei et al's equations as 
shown for comparison. A full analysis of second order sub-harmonics and super- 
harmonics can be found in Madsen and Schaffer (1996). 
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Fig 4       Ratio of second harmonic, a2/a2
Stokes.   1: Nwogu (1993); 2: Wei et al. 

(1995);  3: Present e.g. eqs. (13a-b) with (15a-b) & (18). 

5. Numerical model and its verification 

A numerical model has been developed to solve the two-dimensional equa- 
tions formulated in Chapter 4. The equations are discretized in space by applying 
higher order central-differencing with the variables defined on a space-staggered 
rectangular grid while the temporal integration is performed by using a fourth 
order Adams-Bashforth-Moulton predictor-corrector method. More details about the 
numerical method can be found in Banijamali et al. (1997). 
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5.1 Wave transformation over a submerged bar 

One of the most demanding tests for Boussinesq-type models is the study of 
wave transformation over a submerged bar. In this case nonlinearity increases 
considerably during the propagation at the upward slope and results in energy 
transfer to the higher harmonics. As long as the depth is decreasing the higher 
harmonics will be bound or phase-locked to the primary wave train, but on the 
downward slope the harmonics will be released and propagate as free waves. This 
introduces the pecularity that a linear regular shallow water wave will be converted 
into a linear irregular deep water wave after the passage over the bar. This situ- 
ation calls for highly accurate dispersion characteristics and for this reason most 
Boussinesq models fail to predict the process. 

Beji and Battjes (1993) and Luth et al. (1994) presented a series of accurate 
measurements of wave transformation over a trapezoidal bar with an upward slope 
of 1/20, a downward slope of 1/10, a depth of 40 cm on both sides of the bar and 
10 cm on top of the bar (Fig 6a). The data have previously been used in an inter- 
comparison study in MAST-G8M, see Dingemans (1994). As one example from 
this test series we have selected the case of a wave period of 2.02s and a wave 
height of 2.0 cm. 

Fig 5 shows the measured time series of surface elevations at three locations: 
We notice the transformation from a sinusoidal, linear-wave profile at x-5.2m, to 
a profile of a strongly nonlinear wave at x=13.5m and back to a profile of a fairly 
linear wave at x=19.0m, where the significant frequency obviously has been 
doubled. 

68.0     68.5     69.0 71.0     71.5     72.0 

Fig 5 

69.5     70.0     70.5 

Time (s) 
Harmonic generation over a submerged bar. 
Measured timeseries of surface elevations at three locations 
Input: wave period=2.02s, wave height=0.02m, 1: x=5.2m; 
2: x=13.5m and 3: x=19.0 m. 

The energy transformation to higher harmonics is in fact seen more clearly in Fig 
6b-c, which is based on FFT analysis of time series from a numerical solution of 
the Boussinesq equations. Here we clearly notice the rapid growth of the second 
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(and third) harmonics at the upward slope and the release of these harmonics after 
the bar. 
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Harmonic generation over a submerged bar 
a) Spatial evolution of harmonics (third & fourth);  b) Spatial evolution 
of harmonics (first & second);  c) Bathymetry 
Markers are measurements. 

In Fig 7 we compare the measured time series at x=21.0 m with the numerical 
results corresponding to two different versions of the Boussinesq model: One using 
(y,a,/3)=(-2/5,0,0) leading to Pade [2,2] dispersion characteristics (corresponding 
to the model of Wei et al., 1995) and one using the parameter set of (18) leading to 
Pade [4,4] characteristics. 

The latter is seen to be superior and it provides a highly accurate result. 
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Fig 7       Computed and measured surface elevations at x=21m 
1: Eqs. (13a-b) with (15a-b) & (18), Pade [4,4]    2: Wei et al. (1995), 
Pade [2,2]    3: Measurements 

5.2 Nonlinear refraction-diffraction 

As a second demanding test for the Boussinesq model we study nonlinear 
refraction-diffraction over a semicircular shoal with depth contours varying 
between 0.4572m and 0.1524m as investigated experimentally by Whalin (1971), 

0.04 

30 35 40 

Fig 8 

15        20        25 
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Whalin's nonlinear refraction-diffraction. Spatial evolution of first and 
second harmonics along the centreline. Input: wave period = 1.0s, wave 
height = 0.039m. Markers are measurements. 
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In the present work we focus on the case of incoming regular waves with period 
1.0s and wave height 0.039m. At the boundary the waves are linear but after the 
focusing on the shoal higher harmonics become significant due to nonlinear effects. 
An FFT analysis of time series in each grid point along the centreline has been 
computed and the resulting spatial evolution of first and second harmonics is 
compared with Whalin's experimental data in Fig 8. The agreement is found to be 
most acceptable. 
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