
CHAPTER 198 

SHORECIRC: A Quasi 3-D Nearshore Model 

A.R. Van Dongeren1, F.E. Sancho2, LA. Svendsen3, and U. Putrevu4 

ABSTRACT: A depth-integrated, short wave-averaged nearshore circu- 
lation model is presented, which includes the effects of the 3-D current 

structure over depth. The model includes the description of time-varying 
currents such as infra-gravity waves. Two numerical schemes are devel- 
oped, which will be used for intercomparison in the absence of analytical 

solutions. An absorbing-generating boundary condition is developed based 
on the Method of Characteristics in order to allow propagating waves to 

leave the computational domain with a minimum of reflection while spec- 
ifying incoming waves at the same boundaries. The model is tested for 
the time-varying start-up of a longshore current on a cylindrical coast, and 
the temporal development of both the cross-shore profiles of the longshore 

current and characteristic samples of the vertical structure of the velocity 

profiles are given. 

INTRODUCTION 

Shoaling, breaking, refraction and randomness of short waves are responsible 

for larger scale motions such as steady and unsteady currents and low frequency 

(infragravity) waves. These motions are all described by time-varying nearshore 
circulation models and can be observed as temporal and spatial variations of the 

short wave-averaged setup/setdown and longshore and cross-shore currents. 

Two classes of models exist to describe these nearshore phenomena: (i) mod- 
els that resolve the instantaneous state of motion, such as models based on the 
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nonlinear shallow water equations or on the Boussinesq-equations and (ii) time- 
averaged models that calculate large scale motions due to short wave-induced 
forcing. The latter class can be further subdivided into two categories. Two- 
dimensional horizontal (2DH) models describe the depth-mean current and the 
surface elevation. They are based on the turbulence-averaged, depth-integrated, 
time-averaged Navier-Stokes equations. The second category, 2DV-models, have 
primarily been used to study the vertical structure of the cross-shore circulation 
(Svendsen (1984), Dally & Dean (1984), Stive & Wind (1986), Svendsen et al. 
(1987) and Svendsen & Hansen (1988)). Both types of models are an approxima- 
tion of the fully 3D case, which until now has not been successfully modeled. 

Quasi-3D models were developed to combine the effect of the vertical struc- 
ture with the simplicity of 2DH models. In the approach by De Vriend & Stive 
(1987), the current is split into primary and secondary flow profiles based on the 
assumption that the primary velocity profiles are the same in the cross-shore and 
longshore direction. In a different approach, Svendsen & Lorenz (1989) deter- 
mined the vertically-varying longshore and cross-shore currents separately under 
the assumption of weak dependence. They found that the total vertical current 
profile has a spiral shape (Fig. 1). Svendsen & Putrevu (1990) formulated a 
steady-state 3D nearshore circulation model using analytical solutions for the 3D 
current profiles in combination with a numerical solution of the depth-integrated 
2D horizontal equations for a long straight coast. Sanchez-Arcilla et al. (1990, 
1992) presented a similar concept. They split the current velocity into a depth- 
invariant component and a component with a vertical variation with zero mean 
flow integrated over the central layer. Putrevu & Svendsen (1992) and Svendsen 
& Putrevu (1994a) recognized that the current-current and current-wave interac- 
tions neglected in previous investigations induce a non-linear dispersion mecha- 
nism, which significantly augments the lateral turbulent mixing and explains the 
apparent difference in magnitude between the vertical and horizontal mixing. 

In the present form, SHORECIRC is the time-dependent extension of the 
model presented by Svendsen & Putrevu (1994a). This comprehensive model is 
able to describe a number of nearshore phenomena such as surf-beat, edge waves 
and longshore currents while allowing for alongshore variations in the hydrody- 
namical conditions. By including finite amplitudes, random wave forcing, and 
the effects of the 3D current structure, it extends the description of these phe- 
nomena beyond the usual analytical solutions. The topography part of the model 
is presently configured for a cylindrical coast only, but will later be extended to 
cover arbitrary bottom topography as well. In the present paper we focus on the 
form of the 2DH equations, the generating-absorbing boundary condition used, 
and we test the model performance for a time-varying case of the longshore cur- 
rent on a long, straight beach. 
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Figure 1: Three-dimensional structure of the current velocities in the surf zone 
(from Svendsen & Lorenz, 1989). 

GOVERNING EQUATIONS 

The depth-integrated, time-averaged mass and momentum equations read as 
follows: 

S + TT-W   
V<*dz + Q•°) =° at     oxa \J-ha j (1) 

d   r< 
p—^T + /0-—/     VaVpdz + p-—/   uwaVp + uwpVa dz 

at        axaJ-h0 oxcJc, 

d(        d —i_ _|  
dxp     dx, 

where the radiation stress Sa/3 is given by 

+ Pg(C + ho)g^ + g^ fc, - /^ raP dz 4 + r$ = 0 

-S'a/3 =   /       {pUwaUwP + fia0P) dz - 6a0^Pgh2 

J — ho Z 

(2) 

(3) 

which is equivalent to the definition used by Mei (1983). 

In the above,   Va and ( represent the horizontal current velocity and the 
mean surface elevation, respectively, which is equivalent to the particle velocity 
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and wave surface elevation if an IG wave is considered. uw is the short wave 
velocity, Qa represents the total volume flux and Qw is the volume flux due to 
the short wave motion. (t is the elevation of the wave trough, Tap is the Reynolds 
stress, h0 is the still water depth, while Tjjj and T® represent the surface (e.g. 
wind) and the bottom shear stresses, respectively. The overbar denotes short 
wave averaging and the subscripts a and /3 denote the directions in a horizontal 
Cartesian coordinate system. See Figure 2 for a definition sketch. 

Qm„       z,w 

Figure 2: Definition sketch. 

The form (2) of the momentum equation is written in terms of Va which is the 
current defined in the traditional way: the net velocity at any point below wave 
trough level over and above the purely oscillatory wave motion (i.e. uw = 0). For 
the general case of depth varying currents it is convenient to split this current 
into a depth uniform and depth varying component: 

Va = Vma(x,y,t) + Vda(x,y,z,t) (4) 

where 

Vm (5) 

and 

/      uu 

It may be verified that 

dz 

I     Vadz = Qa - Qw       anc 
J-ho 

/c vda 
J—ho 

dz = 0 

(6) 

(7) 
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Then (2) may be written as 

at oxa \    h    I       oxa J-ho 

+P^— /   uwaVdp + uwfiVda dz + pg (( + h0)~— 
oxaJ(, axfj 

+ ~ (saP - f
(   raP dz) - r$ + T* = 0 (8) 

dxa \ J-fco / 

where Sap is the radiation stress defined by 

Sa/s = baj3 - p  (9) 

which is the definition used by Phillips (1977). 

The integrals in (8) represent the effects of the depth-varying currents. The 
rest of the terms are essentially equivalent to the terms found by Phillips (1977) 
and Mei (1983). 

The equations (1) and (8) are solved by finite differences for the time and 
space variation of £ and Qa in combination with an analytical solution for the 
current distribution along the vertical, which is given in terms of eigenfunction 
expansions. This analytical solution includes integration constants that are in 
turn determined from the numerical solution of the depth-integrated equation 
(8). The details of this are left out for reasons of space limitation (Svendsen & 
Putrevu, 1994b and Putrevu & Svendsen, 1994). 

NUMERICAL SCHEMES 

Two numerical schemes have been developed: a second order, explicit predic- 
tor-corrector method and a second order, ADI staggered-grid scheme. This allows 
us to compare the two numerical solutions to each other when an analytical solu- 
tion for the 2DH current pattern is not readily obtained, for instance in cases of 
random wave forcing or a complicated bathymetry. Both schemes have inherent 
advantages and drawbacks. While simpler, the explicit method has a Courant- 
Friedrichs-Lewy (CFL) limitation on its stability, which sets an upper limit on 
the time-step allowed. Typically we use a Courant number of 0.35 - 0.7. The 
ADI method, which has no CFL limit, is both more robust and more compli- 
cated for the nonlinear terms. Hence it can be operated at even larger Courant 
numbers, although it loses accuracy if the Courant number is increased too much. 
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ABSORBING-GENERATING BOUNDARY CONDITION 

In order to be able to model a limited coastal region in an otherwise large 
ocean, it is necessary to establish boundary conditions along the open ocean-side 
boundaries that satisfy two criteria: 

1. The region outside the computational domain only influences the motion in- 
side through incident (long) waves and currents, which we know and specify 
along the open boundaries. 

2. (Long) waves propagating out of the computational region must be allowed 
to propagate freely through the open ocean-side boundaries with minimal 
reflection. 

Thus this boundary condition must be able to generate a specified long wave 
and simultaneously absorb outgoing waves. Such a generating-absorbing bound- 
ary condition is derived below based on the Method of Characteristics (Abbott, 
1979; Verboom et al, 1981). 

We first notice that the open boundaries are established so that near these 
boundaries the dominating terms in the continuity and momentum equations 
are the terms corresponding to the nonlinear shallow water (NSW) equations. 
Introducing ua = ^, where h denotes total water depth, we can thus write (1) 
and (8) as 

-m+Uad^ = ~gd^ + f0 (11) 

where fp represents forcing terms for the motion which include the radiation 
stress terms, the V^-integrals, the bottom and wind shear stresses and the bot- 
tom slope term, all included in the original equations. 

In characteristic form these equations can be written as: 

9/3+ 5/3+     _3/3+       dv      dh0 

-w = -{u+c)^-v^i-%+9^ + Fe+ (12) 

dp~        ,        ,d/3-       d/3-      dv       dh0     „ 
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97 _<97     _d-y       d( 
— = -«- v- g— + t 
at ox       ay       ay 

(14) 

where (3+ in (12) is the ingoing Riemann-invariant u + 2c and c = ug(ho + C)- 
j3~ = u — 2c and 7 = w are the Riemann-invariants of (13) and (14). The forcing 
terms Fp+, Fp- and F1 originate from the /-terms in (11). Because of these 
terms, the invariants should actually be called variables. It turns out that the 
7-equation is the y-momentum equation itself. See Figure 3 for a definition sketch 
showing the characteristics. Note that the Riemann-variants /3+ and /3~ are not 
related to the subscript /? used in (1) through (11). 

Figure 3: Definition sketch of the characteristics. 

From the Riemann variable j3~, which propagates along a trajectory in the 
negative s-direction and is updated by (13), we can derive a relationship between 
the flux of the outgoing wave (subscripted V in the following) and the incoming 
wave (subscripted Y). Assuming linear superposition of these waves 

Q = Qi + ( (15) 

and substituting the identities 

?< = cC, $r —       C \,r (16) 

which are valid irrespective of wave theory and only assume constant form, we 
get 

\QT\ (cos6»r + 1) = hop- - |<2i|(cos6>; - 1) + 2h0Jgh0 + O (17) 

where 0,- and 9r axe defined as the angles between the normal to the boundary and 
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the incoming and outgoing waves, respectively. From the y-momentum equation 
(14) we then get 

\Qr\ sin0r = Qv - Qiy (18) 

where Qy = v{h0 + £)• From (17) and (18) we can find the unknowns \Qr\ and 9r 

iteratively. With the incoming wave known through specification, and integrat- 
ing (13) and (14) in time, the boundary values of total fluxes Qx and Qy, and 
the surface elevation £, are determined at the next time step. This boundary 
condition is essentially a generalized version of the condition derived for the 1-D 
case by Kobayashi et al. (1987). 

Two cases have been run to test this absorbing-generating boundary condi- 
tion. In the first case, linear waves were generated under various angles at the 
x = 0 and y = 0 boundaries. They were propagated over a flat bottom using 
the linearized equations and absorbed at the x = Lx and y = Ly boundaries. 
This tests the absorbing capability of the boundary condition. The parameters 
used were: wavelength A = 50 m, domain lengths Lx = Ly — 2 A, h0 = 1 m, 
T = A/ \fgho, A = 0.01m, Ax = Ay = ^ and Cr = 0.6. Figs. 4a-c show the 30 
instantaneous water surface for three selected angles 6 = 0°,30'3 and 75°, where 8 
is defined as the angle between the incident wave ray and the y-axis. Reflections 
from the boundaries are barely visible. 

To calculate the reflection coefficient, a time series was taken at a point on the 
boundary. Then the domain was extended to be effectively infinite and another 
time series was taken at the same point. Following Verboom & Slob (1984), the 
reflection coefficient is then defined as the maximum of the difference of the two 
time series normalized by the amplitude of the original wave: 

R=rnoxAm 
A 

Fig. 4 d shows this reflection coefficient R (indicated by the dots) as a function 
of the angle of incidence 9. 

A comparison is made to the widely-used Sommerfeld radiation condition 

l + ^-l")" u = 0 (M) at     cos 8'T ox) 

where n indicates the order of the approximation of the boundary condition. 
For instance, the radiation condition that was introduced by Engquist & Majda 
(1977) has n = 2. The theoretical reflection coefficient of this type of condition, 
which can be calculated as (Higdon, 1986) 

R-- 
<?r + l 

(21) 
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is shown in Fig. 4d for three values of n, indicated by the solid lines. The fig- 
ure shows that the present condition based on the Method of Characteristics has 
much better absorption capabilities than the Sommerfeld condition. The latter 
gives large reflection coefficients for large angles and is fully reflecting for waves 
propagating parallel to the boundary. Note that the reflection, as calculated by 
(19), includes truncation and other numerical errors, while R, as calculated by 
(21), is theoretical only. This probably causes the better performance of the Som- 
merfeld condition at small angles. 

Figure 4:  (a) Instantaneous water surface for 9 = 0°.  (b) Same for 9 = 30°.  (c) 
Same for 9 = 75°.   (d) Reflection coefficients versus angle #,  :  Eq.   (2f), •: 
present model. 

In a second test, waves are simultaneously generated and absorbed at the 
x = 0 boundary. From a cold start, waves are generated under an angle of 0° 
from t = 0T — 19 T and are reflected off a wall at x = Lx. Parameters used 
are: wavelength A = 50 m, domain lengths Lx = 3.3 A and Ly = 0.2 A, h0 = 1 m, 
T = A / ^Jg h0, A = 0.01m, Ax — Ay = ~ and Cr = 0.6. Fig. 5 a shows the 
wave propagating in +x-direction at t = 2 T and Fig. 5 b the resulting standing 
wave. At t = 19 T the incoming wave was turned off instantaneously (causing a 
minor disturbance wave that is visible in Fig. 5 c where a wave propagating in 
the negative ^-direction is trailed by higher frequency disturbances). The central 
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part of the time series (taken at x = 0, y — -f) in Fig. 5d shows the standing 
wave whose amplitude is equal to the analytical solution within a few percent. It 
also shows that the transients radiate out with very little reflection. Still-water 
conditions are reached fairly quickly after the generated waves leave the domain. 

Figure 5: (a) Instantaneous water surface at t = IT. (b) Same for t = 19T. (c) 
Same for t = 25 T. (d) Time series at (x = 0, y = -£•). 

These tests show that the numerical boundaries can be placed close to the 
regions of interest, which limits the computational time for the model. 

TEST CASE: LONGSHORE CURRENTS 

As a formal test of the time-dependent equations (1) and (8), we studied the 
start-up of a longshore current on a cylindrical coast induced by imposing short 
wave forcing in a region at rest at t = 0. The parameters and assumptions used 
are the same as those in Chapter 4 of Svendsen & Putrevu (1994a), called SP94 
in the following, except that here the depth-invariant longshore velocity Vo (see 
their (2.6)) is explicitly defined as the depth mean longshore velocity. 

Fig.  6 a shows the surface elevation versus normalized time for a number of 
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Figure 6: (a) Surface elevation versus time for cross-shore positions indicated 
in the figure. (6) Cross-shore variations of the longshore current velocities for 
different time-steps as indicated in the figure. 

points in the domain. The normalizing time-scale T is defined as the ratio of the 
surf-zone width to the long wave celerity at the breakpoint, ft is also seen that 
the impulsive application of the short wave forcing at t = 0 initiates a surge in the 
mean surface elevation. After reflection from the beach, it propagates seawards 
and is absorbed by the ocean-side boundary condition. The steady-state in the 
set-up is reached in about IT. The longshore current evolution in Fig. 6b, how- 
ever, does not attain steady-state until about 50 T, which indicates a difference 
in time-scales of cross-shore and longshore motion. In fact, the steady-state is 
only approached asymptotically as the net forcing of bottom friction and the ra- 
diation stress decreases to zero. The figure clearly shows that the turbulent and 
dispersive mixing, vtx and Dc (defined in SP94 Eq. (2.22)), cause a spreading of 
momentum (i.e. longshore current velocity) away from the breakpoint but the 
momentum spreads relatively slowly, in particular outside the surf-zone. 
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Figure 7: (a) Three-dimensional current spiral for ^ = 0.24 at t = 0.2 T. (b) 
Same for t = AT. (c) Same for t = 48T .(d) Three-dimensional current spiral for 
fc = 0.98 at t = 0.2T. (e) Same for t = AT. (f) Same for t = 48T. 
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The slow development in the flow implies that the vertical velocity profiles 
can be considered a quasi-steady response to the instantaneous forcing, including 
the gradients of the mean water surface. Thus, using SP94's expressions for the 
undertow and longshore velocity with time-varying coefficients, we can calculate 
the change in the 3-D current profiles as time progresses. Figs. 7a-c show three 
snapshots of the 3-D current spiral for a position close to shore. Figs. 7 d-f show 
the spirals at the same times for a position in the surf-zone near the breakpoint. 
The cross-shore and longshore current profiles are also shown as projections. The 
current velocities, U and V, are normalized by the local wave celerity and £, the 
vertical position above the bed, is normalized by the still water level h0. Figs. 7 a 
and 7d for t = 0.2 T show that initially the flow is almost entirely in the cross- 
shore direction. At t = 4T, the steady-state in the set-up, and consequently 
in the undertow profile, is not yet reached and the magnitude of the longshore 
current is increasing rapidly (Figs. 7b and 7e). At t = 48 T, both the undertow 
and the longshore current have reached steady-state (Figs. 7c and 7f). Notice 
that the longshore current profile in Fig. 7 c is pitched forward, whereas the one 
in Fig. 7 f is tilted back slightly. This is important since the sign of the vertical 
gradient of V indicates a sign switch in the dispersive effect, which is known to 
control the mixing (SP94). We see that the different time scales for the cross- 
and longshore motion cause the velocity to change quite significantly during the 
start-up of the longshore current. With time-varying forcing from random waves, 
the variation will probably be less dramatic. However, the results for the 2DH 
case with weak wave groups analysed by Svendsen and Putrevu (f994b) suggest 
that the vertical currents profiles can vary significantly. 

For completeness it is mentioned that these computations were performed 
with a very short coast to ensure that no instabilities in the form of shear waves 
developed. 

CONCLUSIONS 

A time-dependent, short wave-averaged quasi-3D model is presented that gov- 
erns nearshore circulation processes as well as infra-gravity waves. An absorbing- 
generating boundary condition has been developed that allows waves to leave the 
domain with very little reflection while simultaneously specifying an incoming 
wave. This makes it possible to choose the model boundaries close to the area 
of interest, thus limiting the computational effort required. The time-dependent 
model is tested for the start-up of a longshore current on a long straight coast. 
The vertical velocity profiles are shown to change significantly as the current 
evolves. 
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