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NUMERICAL MODELLING OF FLOW OVER RIPPLES 
USING SOLA METHOD 

Hyoseob Kim 1, Brian A. O'Connor 2 and Youngbo Shim 3 

ABSTRACT 

In order to simulate flow over ripples more accurately than existing 
approaches, a modified MAC scheme (called SOLA) proposed by Hirt et 
al.(1975) was adopted in the present study. Primitive equations composed 
of velocities and pressure were directly solved instead of the usual 
vorticity and velocity potential function. The governing equations were the 
Reynolds momentum equations in the x and z directions and the water 
continuity equation. The driving force was assumed to be the acceleration 
of the wave orbital movement just above the wave boundary layer. A 
mixing length hypothesis was adopted to describe the time-and-space 
varying turbulent eddy viscosity and the shear stress. An explicit 
difference method was used to solve the equations on a regular grid. The 
model showed good result when applied to Sato's(1987) laboratory data. 
The model was applied to a series of ripple tests, using similar hydraulic 
conditions to Sato, to study the effect of bed ripple steepness and 
asymmetry. Only a small effect was found on vortex movement and flow 
characteristics, although a clear offshore vortex movement was found. 

INTRODUCTION 

An example of the seabed shows that it is mostly covered by ripples or 
dunes. Waves or currents affect the generation of ripples directly or 
indirectly. It is widely known that the flow or sediment transport 
mechanism in shallow waters is closely related to the ripple parameters. It 
is an important step to understand the flow over ripples in order to 
accurately predict the sediment transport and the resulting seabed level 
change. 

Bed material movement over ripples in the wave direction is so 
complicated that the wave-induced sediment transport rate or direction 
cannot be simply predicted by empirical formulae. Micro-scale research 
within the ripple length should help the understanding of sediment 
transport  over  ripples.  Interesting  features  related  to  ripples  have been 
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reported by previous researchers. For example, vortex generation and its 
contribution to the suspended sediment transport has been well described 
by previous laboratory or numerical works. 

After Bagnold's(1946) pioneering investigation on flow over ripples, 
laboratory experiments on the flow or sediment movement over ripples 
have been carried out by Du Toit and Sleath(1981), Sato(1987), Horikawa 
and Ikeda(1990), Ranasoma and Sleath(1992), and Horikawa and 
Mizutani(1992). Numerical modelling works have also been undertaken to 
examine flow or sediment movement over ripples. One ripple length has 
usually been used as the computational domain of the models. Existing 
numerical models have adopted the procedure of solving a vorticity 
equation and a velocity potential function. The existing models can be 
classified into two groups, an Eulerian grid group, and a Lagrangian 
discrete vortex method group. Typical models of the former type include 
Sato S.Q987), Blondeaux and Vittori(1991), Huynh-Thanh and Temperville 
(1990), and Sato Y. and Hamanaka(1992), while typical models of the latter 
type include Hansen et al.(1992). The method of solving the vorticity 
equation is known to have some merits. For example, the continuity 
equation is automatically satisfied and the pressure need not be solved. 
However, it has a problem in assigning adequate boundary values at rigid 
boundaries which is not easy because of the rapidly varying vorticity near 
them. Once the vorticity field is obtained, the velocity potential function 
should be solved from the Poisson equation. This procedure involves an 
iteration step, and produces numerical error, which is a negative aspect of 
this approach. Model results of the vorticity type proposed by previous 
invcstigaters have shown rather poor agreement with measured 
experimental data sets upto the present. Therefore, it is proposed to adopt 
a method to solve the primitive velocities and pressures instead of the 
vorticity and velocity potential functions, and compare the two methods. 

In the present study, the primitive variables are solved by an existing 
SOLA method to simulate flow over ripples. A mixing length hypothesis 
in the zero-equation turbulence closure was adopted to express 
time-and-space varying turbulent eddy viscosity. The SOLA approach is 
composed of explicit finite difference schemes. The present model uses a 
regular grid so that an arbitrary rigid bed boundary geometry can be 
easily expressed and modified by the rectangular grid points. 

The present model is applied to synthetic situations to examine the 
effect of ripple steepness and non- uniform ripple shape. 

MODEL DESCRIPTION 

Governing Equations 

We have four basic equations for incompressible fluid dynamics, i.e. 
water continuity and the Reynolds momentum equations in three directions. 
To simplify the problem, a two dimensional vertical situation was assumed 
so that the gradient terms in the y direction disappear in the equations. 
Then, the governing equations are the water continuity and two Reynolds 
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momentum equations in the x and z directions: 

- Continuity Equation 

-f + -if =o (i) 
- Momentum Equations 

du , — du , — du 

:-ijN-^-HF-M-^-f?)     (2»> 
dw  i — dw   , — dw 

=-if+(-^+^)-H-&+^)    (2b) 

where, x, z are horizontal and vertical cartesian coordinates, respectively; 
u , w are the instantaneous velocity components in the x, z directions, 

respectively; u, to are the time-mean velocity components in the x, z 
directions, respectively; u , w are the turbulent fluctuation velocity 
components in the x, z directions, respectively; p is the pressure; g is 
the acceleration due to gravity; and   v is the kinematic viscosity. 

The momentum equations are further simplified, firstly, by ignoring the 
molecular viscosity. Secondly, the turbulent normal stresses are included in 
the pressure terms. The Reynolds stress term u w requires a turbulent 
closure to complete the system. 

Turbulent closure 

Boussinesq's eddy viscosity concept was adopted in the present study. 
The turbulent stress was assumed to be proportional to the mean- velocity 
gradients, that is: 

u'[^z~ + ^x-J (3) 

Prandtl's mixing-length hypothesis was also applied to express the time 
and space varying turbulent eddy viscosity. Prandtl's mixing length 
hypothesis relates the eddy viscosity to the local mean velocity gradient 
and involves a single unknown parameter, the mixing length lm as 
follows: 

where vt is the turbulent eddy viscosity, lm is the mixing length (= x ls/), 

x is the von Kalman constant, and lsb is a length scale. In the present 
model, lsb is assumed to be the shortest distance from the calculation point 
to the solid boundaries. 
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Boundary conditions 

Three kind of boundary conditions were applied in the present model. A 
zero velocity condition was used at the rigid bottom boundary, and a 
periodic condition in a ripple length was used at the two side boundaries. 
At the top boundary a zero shear stress condition was applied where no 
influences are assumed to be reached at the height of two ripple lengths. 

The solution of the Reynolds equations yields velocity and pressure 
distribution in the flow field. When a submerged structure is exposed to 
fluid motion, non-uniform pressure distribution occurs adjacent to the 
structure. In solving the Reynolds equation, this pressure distribution gets 
into trouble. The MAC(Marker-And-Cell) method was proposed by Welch 
et al.(1965) at Los Alamos Scientific Laboratory(LASL) of the University 
of California to treat the problem. After then, the SMAC was proposed by 
Amsden et al.(1970) and the SOLA by Hirt et al.(1975) at LASL. The 
SOLA scheme uses a simple method to calculate the pressure by adjusting 
the tentative velocities iteratively until changes are within a given 
tolerance in the whole computational domain. 

MODEL VERIFICATION 

The present model with the SOLA method was tested against 
Sato's(1987) laboratory results for non-uniform waves, and asymmetric 
ripple geometry (Case 7), in order to examine its validity. The ripple had 
asymmetric geometry with a round crest. The ripple length was 12 cm; 
the ripple height was 2 cm. The generated waves were close to the 
Stokes third order wave; first, second, and third harmonics of the near bed 
orbital velocity amplitude were -29.5, -7.611, and -1.416 cm/s, respectively. 
Sato's(1987) asymmetric ripple profile was tested, which had a round crest 
shape. 

The spatial increments in the x, z directions were both 0.25 cm. The 
time increment was 1/800 of the wave period of 2 seconds. The parameter 
which controls the accuracy of the continuity equation in the SOLA 
method was chosen to be sufficiently small. The CPU required for the 
execution of five real wave periods was typically 7200 seconds on a 
CRAY-2S/YMP machine. 

Flow Field 

The vorticity or the shear stress are directly related to the flow 
information. The model should be able to reproduce the flow fields first. 
The calculated and measured velocity fields were found to match 
reasonably well for the whole wave period. Fig. 1 shows the calculated 
velocities at the wave phase of 19Jt/10(see Fig. 10), and Fig. 2 shows the 
measured velocities at the wave phase of 3TC/10 of Sato's experiment as 
same phase with this study. The present model results reproduces the 
correct position and size of the vortex. The above phase is for the flow 
reversing time, and clearly shows the newly-generated vortex over the 
ripple trough. It should   be mentioned that the present model results show 
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better agreements with the laboratory experimental data sets than the 
previous vorticity model results, although the previous models are not 
systematically assessed in the present work. 

Vertical Distribution of horizontal velocities 

Fig. 3 shows that the calculated horizontal velocity profile over the ripple 
trough at the wave phase of 19Jt/10 agrees well with the measured values 
for Sato's experimental conditions. The present model also reproduced the 
correct position and size of the wave-induced vortex throughout the wave 
period. The horizontal velocity profile agrees well with the measured one 
above the level of about half a ripple height from the ripple trough, while 
the agreement becomes less good near the ripple surface. This would 
partially be due to the unsatisfactory presentation of the smooth seabed 
shape with the regular grid. 

Residual Currents 

Since the residual flow is the secondary flow, it is expected that the 
agreement between calculated and measured residual flow may not be so 
good as that of the primary flow. The calculated and measured residual 
currents (wave period average velocities) are shown in Figs. 4 and 5 
respectively. Sato's laboratory wave condition was close to the Stokes 
third order wave theory, and the order of magnitude of the measured 
residual current over ripples was about 0.1 cm/s in the offshore direction. 
The calculated residual current shows similar magnitude and direction, 
although the separated small circulation cell just next to the ripple crest 
shows a slightly different pattern from the measured one. The reason for 
the deviation may eventually be the boundary treatment techniques, which 
require further investigation. 

Vorticity Contours 

The vortex (circulation cell) was well reproduced by the present model 
at the lee of the ripple crest at the wave phase of 19Jt/10 in Fig. 6. The 
calculated vorticity field gives reasonable agreement on the vorticity 
magnitude with the Sato's laboratory experiment shown in Fig. 7. The 
secondary vortex proposed by Blondeaux et al.(1991) was also well 
reproduced by the present model just over the ripple surface. 

Effect of Sharp Crest Shape 

In order to examine the effect of ripple crest shape (round and sharp), 
the present model was applied to a sharp crested ripple profile. The ripple 
crest shape of Sato's Case 7 experiment was modified from a round to a 
sharp shape for the present numerical test, while all the other parameters 
for the experiment were retained. The calculated flow field for the sharp 
crested ripple at the wave phase of 19 JC/10 is shown in Fig. 8. The 
position of the vortex centre is higher, and the area occupied by the 
vortex is larger than that for the round crested ripple case, as expected. 
The inter-wave-period (IWP) variation of the maximum absolute vorticities 
over  the  round  and   sharp  crested  ripples  are   shown   in  Fig.   9,   which 
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reveals that the maximum absolute vorticities for the sharp-crested ripple 
were larger than those for the round crested ripple. 

MODEL APPLICATION 

Application Conditions 

In order to examine the effect of ripple steepness and ripple asymmetry 
on the flow over ripples, the present numerical model was applied to 
various artificial conditions. The model run conditions were the water 
depth of 40 cm; the wave height of 15 cm; the wave period of 2 seconds. 
The waves were assumed to be the Stokes third order waves, i.e. the 
near-bed wave orbital velocity was obtained from the following 
equation (refer to Fig. 10) 

Wco= c (F{. cos w t+Fi. cos2<u H-F3. cos3<« £) ( 5 ) 

where um is the near-bed wave orbital velocity outside the wave 

boundary layer, c is the wave celerity. Fx,Fz, and F3 are the constants 
in the Stokes third order wave, g is the acceleration due to gravity, k is 
the wave number (k =2TT/L). a> is the angular frequency (a> —2izjT). h is 
the water depth, a is the wave amplitude. L is the wave length. T is 
the wave period. The coefficients of equation (5) can be obtained from 
following relationships: 

c2 = i • tanh(M) • (l +a2k2 8coSh4(M)-8coSh2(M)+9 \     ( Q ) 
k \ 8sinh'(M) / 

Fl =   ~„-h(bU\ ( 7a ) sinh (kh) 

3 a2 k2 

4 sinh4(M) F2 = i      * 4*   , (7b) 

F _ 3    a3 £3{13-4cosh2(M)) ( lr , 
64 sinh7(M) 

(f)'[ , |   -iq 3{8cosh6(M)+l} 
i+a*        64sinh6(M) 

( 8 ) 

where   H is the wave height. 

The ripple dimensions (length and height) were calculated from 
Nielsen's(1981) empirical formulae. The ripple profile for the given ripple 
dimensions was obtained from the following equations proposed by 
Sleath(1974): 

x =  Xc - (rjl2)sm{27tXJ X) ( 9a ) 
z =   (?/2) cos(2;rXc/,0 ( 9b ) 

where   Xc  is   the  parameter  for  a  curvilinear  coordinate;   x, z  are  the 

horizontal and vertical cartesian coordinates, respectively; and   rj, A are the 
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ripple height and the ripple length, respectively. 

In order to examine the effect of ripple steepness and asymmetry, a 
fixed ripple length was chosen. The wave height of the ripple (n.) varied 
between 1.0 and 2.0 cm, and the longer half of ripple length (XI) varied 
between 4.5 to 6.3 cm. Ripple geometries for the tests are given in the 
following table: 

Table 1    Ripple geometries for numerical tests 

Run 

Case 

Ripple Length (cm) Height(cm) 
Remarks 

XI X2 X Xl/X T) T|/X 

RS-1 1.00 0.11 

RS-2 
RS-3 
RS-4 

4.5 4.5 9.0 0.5 
1.25 
1.50 
1.75 

0.14 
0.17 
0.19 

Variation 
of Ripple 
Steepness 

RS-5 2.00 0.22 

RA-1 4.50 4.50 0.50 
RA-2 
RA-3 

RA-4 

4.95 
5.40 

5.85 

4.05 
3.60 

3.15 

9.0 
0.55 
0.60 

0.65 

1.50 0.17 

Variation 
of Ripple 
Asymmetry 

RA-5 6.30 2.70 0.70 

M, 
;]__        TI    : Ripple height 
""'" X    : Ripple length 

XI : Longer half length of ripple 
X2 : Shorter half length of ripple 

Application Results 

Fig. 11 shows the typical flow pattern at a wave phase for case RS-5. 
Fig. 11 confirms the fact that the near-bed flow turns it's direction before 
the ambient flow (outside the wave boundary layer) turns it's direction. 
Existing one-dimensional vertical wave boundary layer models have also 
produced the phase shift between the ripple length-averag boundary layer 
flow and the outside boundary layer flow. However, the two-dimensional 
vertical model can track the detailed movement of vortices which directly 
affect the sediment transport in suspension or as bed load. 

1) Vertical distribution of horizontal velocities 

Fig. 12 (a) shows the vertical distribution of horizontal velocities over 
the ripple trough at the wave phase of 18^/10 for various ripple 
steepnesses, and Fig. 12 (b) for various ripple asymmetry. The centre of 
the strong vortex generally positions at the ripple crest level. Another 
weak vortex at the two ripple height is also seen in Fig. 12. The vertical 
distribution of horizontal velocities for various cases is nearly the same at 
the upper part above two ripple heights( 2.0 v) from the ripple trough. 

If the ripple is steep, the level of the vortex centre is generally high at 
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the wave phase of 18^/10. However, if the wave period is not long 
enough, the vortex cannot grow sufficiently to fill the ripple space between 
the two crests. 

Fig. 12 (b) shows that the position of the vortex centre and the vertical 
distribution of horizontal velocities are almost the same for various ripple 
asymmetry. The ripple asymmetry seems not to affect the vortex 
movement very much. 

2) Time variation of horizontal velocities 

The time variation of horizontal velocities at ripple crest is shown in 
Figs. 13 (a) and (b). At the ripple crest the horizontal velocities show little 
difference for various ripple steepness or asymmetry. In contrast to the 
ripple crest, the velocities at the ripple trough surface for various ripple 
steepness, see Figs. 13 (c), produces the double peak time variation of 
horizontal velocity. This pattern is closely related to the vortex motion 
over the ripple trough. 

3) Track of vortex 

Bagnold(1946) briefly described the track of a vortex over the ripples. 
Longuet-Higgins(1981) presented the vortex motion by time series using 
his discrete vortex model. He proposed that the vortex would reach upto 
the level of 2.5 A when the water particle excurtion length (d0) is 1.5 A 
from his discrete vortex model results. 

In the present study, the track of the separated vortex from the ripple 
crest was calculated for the case RS-3, see Fig. 14. The calculated 
movement of the two vortices generated in the onshore and offshore 
directions is not symmetric due to the asymmetry of the wave orbital 
velocity in both directions. The vortex generated at the lee side of the 
ripple crest moves about 2.5/1 in the onshore direction and disapears, i.e. 
the vorticity approaches zero after about a wave period time. On the other 
hand, the vortex generated at the front side of the ripple crest moves 
about 3.0A in the offshore direction and turns its direction. It disapears 
after about one and half wave periods. 

The movement of the vortex generated at the lee side of the ripple crest 
for case RS-3 can be devided into 3 phases. The first phase is the 
generation phase. This starts at the wave phase of about 3^/10. The 
vortex centre moves slightly upwards by the strong offshore ambient wave 
orbital velocity and slightly sinks down at the wave phase of 7 7r/10 due 
to the weak wave orbital velocity until the wave phase of 11 TT/ 10. The 
second phase is the rising phase by the change of the wave orbital 
velocity direction. During the second phase, the vortex departs from the 
ripple trough by the onshore return flow. The third phase is the free 
vortex phase. The rising phase between the wave phase of 3TT/10 and 
11 TT/10 produces the two peak time variation of horizontal velocity at the 

ripple trough surface, see Fig. 13 (c). 

The behaviour of the vortex generated at the front side of the ripple 
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crest shows quite different behviour, i.e. asymmetric movement to the 
former pair vortex, see Fig. 14. The movement of the vortex generated at 
the front side of the ripple crest can also be devided into 3 phases. The 
vortex rises from the wave phase of 15^/10 to 19 W10. The vortex 
starts to turns it's direction at the wave phase of 19 W 10 by the outside 
return flow. The distance moved is about  3.0 A . 

4) Vorticity 

The vorticity contours for the wave phase of 19 TT/ 10 are shown in Fig. 
15. It is interesting to note that the smaller the ripple steepness ( r// A), the 
larger the vorticity of the separated vortex as shown in Fig. 16 (a) and 
the maximum vorticity of the separated vortex for all cases was between 
33~38 sec _1. If the ripple became steeper, the area occupied by the vortex 
was expanded. The ripple surface provides higher energy dissipation rate 
due to the strong bed shear stress which may reduce the vorticity at the 
vortex centre. On the other hand, ripple asymmetry (cases RA-1 to 5) 
shows little effect on the vorticity of the separated vortices, see Fig. 16 
(b). 

The maximum vorticity is shown in Fig. 17 for various ripple steepness 
and asymmetry at a wave phase of  15W 10. 

The time variation of maximum vorticity on the ripple surface is 
presented in Fig. 18 for the cases of ripple steepness and asymmetry 
variation. In this figure, (+) value indicates the clockwise vorticity. 

5) Bottom shear stress 

Longuet-Higgins(1981) derived a horizontal velocity distribution for 
oscillatory laminar boundary layer from the Navier-Stokes equation. Bottom 
shear stress for oscillatory laminar boundary layer can be derived from 
that formula, and the phase different between the bottom shear stress and 
the water particle velocity outside the oscillatory laminar boundary layer is 
known to be 45°. 

In the present study, the bottom shear stress can be calculated from the 
mixing length assumption, i.e. the multiplication of the mixing length 
squared and the gradient of vertical velocity as follows: 

d Up 
dn 

I dut\ 
\   dn   I ( 10 ) 

where lm is the mixing length (lm — x • 4*), ls/, is the shortest distance 
from the calculation point to the solid boundaries, x is the von Karman's 
constant(0.4), up is the velocity parallel to the solid boundary surface, and 

n is the normal direction to the solid boundary. 

The time variation of bottom shear stress divided by the density (rb/p) 
and water particle velocity(non-scale) at the ripple crest is shown in Fig. 
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19. Jonsson and Carlsen(1976) proposed that that the phase shifts between 
the wave orbital velocity and the bed shear stress are 18 ° and 31 ° in the 
onshore and offshore directions, respectively, for a rough turbulent flow 
over a flat bed with relatively small roughness. The phase differences for 
the turbulent flows are smaller than that (45 °) for the laminar flow. 

The present model results show that the phase shift between the bottom 
shear stress and the water particle velocity for the test cases are between 
16° and 40°. The value varied depending on the vortex strength. The 
steeper the ripple, the bigger the phase difference. For the less steep ripple 
of case RS-T, the phase shift was 16° and 30° in the onshore and 
offshore directions, respectively. For the steep ripple of case RS-5, the 
phase shift was 25° and 40° in the onshore and offshore directions, 
respectively. The ripple asymmetry gives little influence on the phase shift 
between the bottom shear stress and the water particle velocity. 

CONCLUSIONS 

A numerical model is proposed here to obtain the wave- induced 
turbulent flow information over ripples. The present model directly solves 
primitive velocities and pressure from the continuity and Reynolds 
momentum equations. The calculation of pressure term followed the 
existing technique, SOLA. The turbulence was modelled by a mixing 
length zero-equation closure. A regular model grid was chosen for the 
present model. 

The numerical model was firstly verified using Sato's laboratory 
experimental conditions. The model results generally agree well with the 
measured values in the velocity field, vorticity, and the residual flow field. 

The model was then applied to various situations to assess the 
importance of ripple steepness and asymmetry. In order to examine the 
effect of ripple steepness and asymmetry, the waves were assumed to be 
Stokes third order waves. The two vortices generated in the onshore and 
offshore directions move in a different manner due to the asymmetry of 
the wave orbital velocity. It moves 2.5 A in the onshore direction, and 
3.0A in the offshore direction. The vorticity becomes very small after 
about 1.5   wave periods. 

The smaller the ripple steepness, the larger the vorticity for the 
separated vortex. If the ripple became steeper, the area occupied by the 
vortex was expanded. The ripple surface provides higher energy dissipation 
rate due to the strong bed shear stress which may reduce the vorticity at 
the vortex centre. 

The time variation of horizontal velocity at the ripple trough surface 
shows two peaks, which become clearer for steeper ripples because of the 
strong vorticity. The two peaks can only be explained by the vortex 
movement. 

The phase  differences  between  the  wave  orbital  velocities  outside the 
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wave boundary layer and the bottom shear stresses at the ripple crest are 
shown to be about 30° on average. The phase difference slightly varies 
depending on the vortex strength at the ripple crest. 

Judging from the model results, ripple asymmetry gives only a small 
influence on the vortex movement or the flow characteristics over the 
ripples. 
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Fig. 3   Comparison of horizontal Fig. 4   Calculated residual flow field 
velocities over a ripple trough over a round crest 
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Fig. 5   Measured residual flow field 
over a round crest 
(after Sato, 1987) 
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Fig. 6   Calculated vorticity over a 
round crest 
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Fig. 7   Measured vorticity over a 
round crest(after Sato, 1987) 
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Fig. 8   Calculated flow field over a 
sharp crest 
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Fig. 9   IWP variation of maximum 
vorticity over round and 
sharp crests 
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Fig. 10   Wave orbital velocity profile 
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Fig. 11    The process of return flow 
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Fig. 12   Vertical distribution of 
horizontal velocity at the 
wave phase of 18 x/10 
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Fig. 14   Track of vortex centre 
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Fig. 13   IWP variation of horizontal 
velocity over a ripple crest 
and trough 

Fig. 15   Vorticity for each computational condition at the wave phase of 
19 !T/10 
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Fig. 16   Vorticity for the seperated vortex at the wave phase of 19 7r/10 
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Fig. 17   Maximum vorticity at the wave phase of 15 ;r/10 
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Fig. 18   IWP variation of maximum vorticity 
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Fig. 19   IWP variations of bed shear stress for each computational 
condition 




