
CHAPTER 151 

HOW MUCH VELOCITY INFORMATION IS NECESSARY TO 
PREDICT SEDIMENT SUSPENSION IN THE SURF ZONE? 

Bruce E. Jaffe1, David M. Rubin1, and Asbury Sallenger, Jr.2 

ABSTRACT 

The time-dependent response of sediment suspension to water velocity was 
explored by modeling field measurements collected in the surf zone during a large 
storm. Both linear and nonlinear input-output models were formulated with water 
velocity as input and suspended-sediment concentration as output. A sequence of 
past velocities (velocity history), in addition to velocity from the same instant as the 
measurement of suspended-sediment concentration, were used as input. The 
velocity-history length was allowed to vary. The models also incorporated a lag 
between input (instantaneous velocity or velocity history) and output (suspended- 
sediment concentration). 

Instantaneous horizontal water velocity, or velocity to a power, does not 
contain enough information to predict suspension in the surf zone. Unlike steady 
uniform flow, more than one velocity is necessary to parameterize pick-up and 
mixing of sediment into the water column. Using a velocity history improves 
predictions of suspension by more fully specifying flow conditions (including 
accelerations and changes in accelerations) responsible for suspension. 

Suspension in the future is better predicted than suspension at the same 
instant as velocity measurements. Incorporating such a lag between velocity and 
concentration improved predictions, with optimum lag time increasing with elevation 
above the sea bed (from 1.5 seconds at 13 cm to 8.5 seconds at 60 cm for linear 
models). These lags are largely due to the time for an observed flow event to effect 
the bed and mix sediment upward. 

Nonlinear models relating suspension to velocity do better than linear models 
using the same velocity history. Nonlinear models are able to exploit changing 
relationships between suspension and velocity history for different wave shapes. For 
the environmental conditions of our study, the optimal model (correlation coefficient 
of 0.58) used 3 seconds of velocity history (approximately one-quarter wave period) 
and a 1.5 second lag to predict suspension. 
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INTRODUCTION 

Models for sediment suspension in the surf zone are based on models 
developed for streams and the continental shelf. Additions of time-varying pick-up 
and mixing of sediment into the water have been the major changes to fluvial or 
continental shelf models to make them usable in the surf zone. For stream flow, a 
mean velocity (raised to a power) is used to determine the steady driving force for 
suspension. Two velocities, a mean velocity and a maximum orbital velocity, are 
used to determine the forcing for suspension in continental shelf sediment transport 
models (Smith, 1977; Grant and Madsen, 1979; Glenn and Grant, 1987). It is not 
obvious how much velocity information is necessary to predict suspension in the surf 
zone or if velocity alone is a good predictor for suspension. 

There are many complexities that make it difficult to use first principles of 
physics to formulate models for sediment suspension. For example, it is not obvious 
how to model suspension in a reversing flow with velocity asymmetries caused by 
irregular waves. In this paper, we use a method developed by researchers studying 
nonlinear systems, input-output modeling, to determine which velocity information is 
important to predict sediment suspension. The goal of this study is to guide us in 
formulation of improved models. 

METHODS 

The ability to predict sediment suspension from flow velocity was evaluated 
using input-output modeling of field measurements. Input-output modeling, 
employing one time series of forcing input and a simultaneous series of output 
response, has been described by Hunter and Theiler (1992). In this study, input is a 
single near-bed flow velocity or a sequence of velocities (velocity history) and output 
is suspended-sediment concentration. 

The techniques applied in this paper are based on techniques that have been 
developed recently for forecasting nonlinear, nonperiodic, time series and spatial 
patterns (Livezey and A. G. Barnston, 1988; Farmer and Sidorowich, 1989; 
Sugihara and May, 1990; Casdagli, 1991; Casdagli et al., 1992; Rubin, 1992). The 
procedure requires splitting a time series into two parts. One part, the learning set, is 
used to learn the relations between input and output variables. The other part of the 
time series, the testing set, is used to test the predictive ability of relations determined 
from the learning set. Predictions are made by searching the learning set for 
conditions where the recent velocity history approximates the velocity history of a 
predictee from the testing set, and then using the concentration response of these 
nearest neighbors in the learning set to predict the concentration of the predictee. The 
general approach is outlined below; details of the computational algorithm are given 
by Casdagli (1991) and Rubin (1992). 

The approach in this study is to relate concentration C to a sequence of 

velocities (Ut through Ut+1    ) in the learning set by solving 

m 

Ct =a0+ I aj U"+l_i (1) 
i=l 

where m is the number of velocity measurements that are used to predict each C, n is 
an integer, and t is time. 
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Eq (1) can be used for both linear and nonlinear modeling. For linear 
models, ao through am are evaluated a single time for the entire learning set. The 
values of ao through am are then substituted in eq (1), and each predictee velocity 
sequence from the testing set is substituted in eq (1) to predict concentration. The 
resulting model is a global, linear, multiple regression. 

For nonlinear models, ao through am are re-evaluated for each prediction 
using a subset of observations in the learning set. To solve eq (1) requires a 
minimum of m+1 observations from the learning set, but any greater number of 
observations can be used. For each solution, the k observations that are most similar 
to each predictee sequence are used to solve eq (1). For example, if concentration is 
being related to a sequence of 2 successive velocity measurements, then to make a 
single nonlinear prediction, the entire learning set is searched to find the 3 sequences 
of 2 successive velocities that are closest to the predictee sequence. Eq (1) is used to 
solve for ao through a2 using these 3 nearest-neighbor velocity sequences and the 3 
corresponding observed concentrations in the learning set. Those values of ao ... &2 
and the velocities of the predictee sequence are then substituted in eq (1) to predict 
concentration. 

Closeness of sequences is measured using least squares, and those sequences 
that are most similar to the predictee sequence are known as nearest neighbors. 
Ranking of neighbors can be visualized in two ways: (1) similarity of velocity 
sequences in a time series or (2) distance in velocity space. Determination of nearest 
neighbors can be visualized as matching a segment of velocity time series by sliding a 
m-point window through the time series (Fig. la). The most similar velocity 
sequences (evaluated by the squared differences between individual points in the two 
sequences) are defined to be the nearest neighbors. Alternately, nearest neighbors 
can be visualized by plotting each velocity sequences as a single point in velocity 
space. For a two-point sequence, the axes of velocity space are the two successive 
velocities (Fig. lb). The nearest neighbor to a velocity sequence (represented as a 
single point) is the nearest point. Note this is computationally equivalent to the 
squared difference in individual dimensions. The three nearest neighbors to point A 
in Figure lb are points B, C, and D. 

Because ao through am are re-evaluated for each prediction in nonlinear 
modeling, nonlinear relations between concentration and velocity can be learned and 
exploited for forecasting, even though eq (1) is purely linear. The advantage of using 
a small subset of observations (or small neighborhood) in the learning set is that the 
nonlinear structure of the data can be approximated most precisely using small linear 
pieces; the resulting model (called a local linear model) is thus more sensitive to the 
specific flow conditions (Fig. 2a). In contrast, the advantage of using all the 
observations in the learning set (a global model) is that noise reduction is greater 
(Fig. 2b). In the present study, we know that sediment response to forcing by 
velocity is nonlinear but are using the forecasting technique to learn if the system is 
noise-free enough that nonlinear models outperform linear models and if the 
nonlinearity is more complicated than Un or IUIn. 
In addition to varying the number of nearest neighbors used to make forecasts, we 
can vary the number of velocity measurements (velocity history) used to predict each 
concentration. This velocity history can be as low as 1 point (where instantaneous 
concentration is related only to the simultaneously observed velocity), but increasing 
the velocity history to values greater than 1 can improve modeling accuracy in several 
ways. First, additional dynamic properties of the forcing flow can be identified. For 
example, with a single velocity observation, only velocity is known; with a second 
sequential velocity observation, acceleration can also be determined; and with a 
longer sequence of velocity measurements, wave shape can be identified. 
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Figure 1. Two methods of visualizing selection of nearest neighbors, (a) Sliding a 
window the width of the velocity sequence through a time series to select similar 
sequences, (b) Distance in velocity space. In this case a two point sequence can be 
represented by a single point having coordinates given by velocity and velocity from 
the previous time step. The nearest neighbors to point A are points B, C, D. In both 
cases, the difference between sequences (a) or the distance between neighbors (b) is 

Ul ,,.+i_,') > where m is the number of points in the velocity defined by j,(Ut+i-i 
i=\ 

sequence, U is the velocity in the testing set, £// is the velocity is the learning set, 
and t and ts are the times of the last point in the velocity sequences in the testing and 
learning set, respectively. 
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(b) 

U u 
Figure 2. Comparison of modeling results for hypothetical steady flow transport 
data. Dots are data points; light lines are global linear model predictions; dark lines 
are local linear model predictions. For noise-free data (a), local linear models can 
learn the nonlinear relation between concentration, C, and velocity, U, by looking at 
local pieces of the curve, thereby outperforming a global linear model. For example, 
a threshold velocity for suspension can be predicted by a local linear model. For 
noisy data (b), the global linear model outperforms local linear models because of the 
greater noise reducing capability of the global model. These examples are based on 
one-dimensional models (concentration is predicted from a single value of velocity). 
In the case of surf-zone transport, concentration is predicted from a sequence of 
velocities, and the relations can not be displayed as easily. Instead, the capability of 
each model is quantified by the correlation coefficient for the predictions. 

Second, because of the time required for settling to occur, concentration in a 
decelerating flow depends on previous velocities (those that caused suspension of 
sediment that has not yet had time to fall to the bed). If the velocity history used to 
predict concentration is extended too far into the past, however, forecasts become 
degraded because the early velocities have increasingly little relevance to the later 
concentration. 

In applying these forecasting techniques, a large number of models are 
evaluated, each employing a different number of nearest neighbors k, a different 
number of velocity measurements m used for each forecast, a different exponent of 
the velocity n, or a different time from the end of the velocity sequence to the time for 
which concentration is forecast (lag). The models are evaluated by the correlation 
coefficient between predicted and observed concentrations. 

FIELD EXPERIMENT 

Sediment suspension was measured during a large cooperative field 
experiment investigating the morphologic response of the nearshore to storms 
conducted at the U. S. Army Corps of Engineers Field Research Facility (FRF) at 
Duck, North Carolina (see Mason et al, 1984, for a description of the experiment). 
The FRF is located on a long straight beach with well-sorted fine sand (~0.15 mm 
median diameter) in the offshore. 

As part of this experiment, the U. S. Geological Survey deployed an 
underwater sea sled (Sallenger et al, 1983) equipped with instruments to measure 



2090 COASTAL ENGINEERING 1994 

waves, currents, sediment suspension, and profile change. Waves were measured 
using a pressure sensor and horizontal currents were measured at 3 elevations (0.5, 
1.0, and 1.75 m above the bed) using 2.5-cm-diameter electromagnetic current 
meters. Suspended-sediment concentration was measured at 5 elevations (0.10, 
0.13, 0.19, 0.31, and 0.61 m above the bed) using optical backscatter sensors (OBS, 
Downing et al., 1981). The nearshore profile was measured using an infrared range- 
finder sighting on prisms mounted on a 10 m mast as the sled was pulled offshore 
and onshore by a winch and lines and a system of blocks. The sled was moved to 
measurement locations where 34.1 minutes of data were collected at 2 Hz from each 
sensor. 

RESULTS AND DISCUSSION 

Data reported in this paper were collected at one mid-surf-zone station, 100 m 
offshore, during the waning stages of a large extra-tropical cyclone on October 13, 
1982. Offshore significant wave height was 1.6 m, and peak period was 12 s during 
data collection. Significant wave height at the measurement location was 1.7 m 
(water depth of 3.6 m). Mean currents at 0.5 m above the sea bed were directed 
obliquely offshore, with a 0.11 m/s cross-shore component and a 0.12 m/s longshore 
component. Significant orbital velocities at 0.5 m above the bed were 0.85 m/s in the 
cross-shore direction and 0.36 in the longshore direction. Waves were asymmetrical, 
with stronger, short-duration onshore flows and weaker, longer-duration offshore 
flows. Maximum cross-shore velocity was 2.12 m/s, directed onshore. The bed 
configuration was calculated to be within the planar-bed regime of Komar and Miller 
(1975). 

Using instantaneous velocity to predict suspension 

A time series of suspension and horizontal water velocity (Fig. 3) shows 
intense suspension (referred to as suspension events by Downing, 1983; Jaffe and 
Sallenger, 1992) occurs irregularly. A scatter plot of concentration 19 cm above the 
sea bed versus cross-shore velocity (squared, to remove the sign and to make the 
relation between flow and concentration more in agreement with what is known for 
steady flow) 50 cm above the sea bed shows a lack of correlation between suspended 
sediment concentration and instantaneous velocity (Fig. 4). High concentrations can 
occur at zero velocity because sediment suspended earlier has not yet settled. Low 
concentrations can occur at high velocities because sediment suspended at the bed has 
not yet mixed high enough into the water column to reach the elevation of the sensor. 
The correlation between instantaneous concentration and cross-shore velocity squared 
is very poor, with a correlation coefficient of -0.02. Correlations between the 
instantaneous concentration and velocity to a higher power are also poor (Fig. 5). 
Other instantaneous velocity measures, longshore velocity or speed, are also poor 
predictors of suspension (Jaffe and Rubin, in preparation; Jaffe, 1993). More than 
instantaneous velocity is needed to predict sediment suspension. 

Acceleration as a Predictor for Suspension 

Acceleration/deceleration effects on bottom turbulence have been observed by 
other researchers. Increased turbulence during flow deceleration was observed by 
Schubauer and Skramstad (1947) in the laboratory. Gordon (1975) found increased 
Reynolds stresses during deceleration in tidal flow (Fig. 6). Hanes and Huntley 
(1986) and Osborne and Greenwood (1993) measured increasing suspension during 
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Figure 3. Time series of cross-shore velocity (U) and longshore velocity (V) at 50 
cm above the sea bed, and suspended sediment concentrations (C) at 4 elevations 
above the sea bed (13, 19, 31, and 61 cm above the sea bed). For this time series, 
the testing set used in the modeling is the first 6.66 minutes (800 points) of the time 
series. The learning set is the measurements from 6.66 minutes to 34.1 minutes 
(3295 points). Intensity of suspension decreases with elevation above the bed. Note 
the short-lived periods of intense suspension (suspension events) throughout the 
record. 
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Figure 4. Scatter plot of concentration at 19 cm above the sea bed versus the cross- 
shore velocity squared at 50 cm above the sea bed. The correlation coefficient for a 
linear regression (global model) is -0.02. Note the high concentrations occurring at 
low velocities. 
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Figure 5. Correlation coefficient versus exponent of velocity. Correlation 
coefficients are for a linear model using instantaneous velocity raised to a power to 
predict concentration at 19 cm above the bed. The velocity and absolute value of 
velocity raised to a power are plotted for odd powers. Linear models using 
instantaneous velocity as input are not able to predict concentration well. 
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Figure 6. Reynolds stress versus flow speed for flood tidal flows. Note that 
stresses are greater during decelerating flow than accelerating flow for the same 
speed. Figure from Gordon, 1975. 
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flow deceleration over bedforms. Conley and Inman (1992) found sediment pluming 
events (in which sediment was lifted on the order of 10 cm into the water column) 
occurred during the decelerating phase of some waves over plane beds (Fig. 7). 

We tested to determine if suspension was correlated with instantaneous 
acceleration. Sediment concentration was not well correlated (r=0.12) with 
acceleration at the same instant (Fig. 8). Higher concentrations tended to occur 
during decelerating flow than accelerating flow. Onshore accelerating flows tended 
to have higher concentrations than offshore accelerating flows. Highest 
concentrations occurred during decelerating onshore flows under the wave crest. 
High concentrations also occurred at low accelerations and after flow reversals. 
Similar to instantaneous velocity, instantaneous acceleration was a poor predictor for 
suspension. However, the tendency for higher concentrations during flow 
deceleration indicates that it is important to include acceleration in the input for a 
model of sediment suspension. 

Using a Sequence of Velocities to Predict Suspension 

A velocity history contains more information about the state of the flow (and 
possibly about forces causing suspension) than a single velocity. In the previous two 
sections, instantaneous velocity and acceleration were found to be poorly correlated 
with suspension. More information is contained if two velocity points are used to 
define the flow (Fig. lb). For example, a two-point velocity sequence contains 
information about magnitude and direction of instantaneous velocity and magnitude 
and sign of acceleration. Seven different flow regimes can be delineated by regions 
in a velocity space plot of a two-point velocity sequence (Fig. 9a). The diagonal line 
in Figures lb and 9a indicate no accelerations; points off this line indicate either 
accelerating or decelerating flow. Contours of concentration plotted in two-point 
velocity space (instantaneous velocity and velocity 0.5 seconds earlier) are ordered 
and show that high concentrations occurred for some sequences of two velocities 
(Fig. 9b). For example, high concentrations occurred for decelerating strong 
onshore flows (A in Fig. 9b). 

Longer velocity histories give information about persistence of strong flows, 
acceleration history, flow reversals, and wave shape, all of which could be important 
in predicting suspension. A representative time series of cross-shore velocity (Fig. 
10) illustrates how irregular waves have different velocity sequences even where 
instantaneous velocities and accelerations are similar. 

To test whether more information about suspension is contained in earlier 
flows, differing lengths of velocity histories were used as input to models. 
Correlations increased as more velocity history was included to relate velocity to 
suspension until reaching a maximum of 0.42 at a velocity history length of about 
one wave period. Correlation coefficients for nonlinear models were maximum 
(0.48) at about one-half wave period of velocity history (Jaffe and Rubin, in 
preparation; Jaffe, 1993). The increase in predictability primarily results from a more 
complete description of flow conditions causing suspension. Improved predictions 
were also the result, in part, of including a lag effect. 

Lag between Velocity and Suspension 

Because modeled concentration was measured 19 cm above the sea bed, a lag 
between the flow inducing suspension and the concentration response would be 
expected (to allow time for sediment to be carried up into the water column). Models 
incorporating such a lag performed better than models that did not. For a linear 
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Figure 7. Sediment plume rising above the bed during decelerating flow under a 
wave crest. Figure from Conley and Inman, 1992. 
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Figure 8. Concentration at 19 cm above the bed versus cross-shore flow 
acceleration. Triangles are onshore flows; squares are offshore flows; crosses are for 
periods where flow reversed. Highest concentrations occurred during decelerating 
(negative sign) onshore flows. 
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velocity sequence (b) Concentration contours plotted in velocity space (instantaneous 
velocity and velocity from the previous time step). See Figure lb for data density. 
High concentrations occurred for decelerating strong onshore flows (e.g., point A). 
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model with instantaneous cross-shore velocity squared as input, peak performance 
was obtained using velocity to predict concentration 1.5 seconds later (Fig. 11). This 
lag increased with elevation above the bed, increasing to 8.5 seconds at 61 cm above 
the bed (Jaffe and Rubin, in preparation; Jaffe, 1993). Nonlinear models and models 
using a velocity history also performed better when including a lag. An additional 
cause for a lag would be a sediment pick-up response lagging the velocity. This 
could occur if turbulence at the sea bed took time to build or its structure changed 
with time (e.g., response to flow reversal). 
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Figure 10. Time series of cross-shore velocity at about 300 s into the record (Fig. 3) 
illustrating why a velocity history is necessary to fully specify flow conditions. 
Points A, B, and C have similar instantaneous velocities, but different accelerations 
and are preceded by different velocities. 

Figure 11. Correlation coefficient versus lag time between input (a single cross- 
shore velocity squared) and output (concentration 19 cm above the sea bed). A 
positive lag is concentration later than velocity. Models perform better when a lag 
time is included primarily because they account for the time it takes to mix sediment 
up into the water column. 



SEDIMENT SUSPENSION PREDICTION 2097 

Best model 

Incorporating lag and velocity history into a nonlinear model gave the best 
predictions for suspension. Addition of nonlinearity allows differing relationships 
between velocity and concentrations for different velocity sequences (e.g., flow 
under differing wave shapes). The optimal model (correlation coefficient of 0.58) 
used 3 seconds of velocity history (approximately one-quarter wave period) and a 1.5 
second lag to predict suspension. This nonlinear model was able to predict the 
suspension event at 312 seconds (Fig. 12). Just as important, suspension events 
were not predicted for waves between 320 and 350 seconds. 

Mean concentration and cross-shore suspended sediment flux were well 
predicted by this model. Observed and predicted mean concentration was 1.12 and 
1.11 gm/1, respectively. Observed and predicted cross-shore flux at 19 cm above the 
bed was 37.1 and 34.3 gm/m2/s onshore, respectively. The good agreement between 
predicted and observed flux was largely due to good predictions for high 
concentration. Low concentrations were not predicted as well; but, because their 
phasing relative to the wave orbital velocity is more random than high concentrations 
(Jaffe and Sallenger, 1992), errors in predictions were diminished by fluxes in 
opposite directions canceling resulting in a low contribution to net flux. 

Velocity (m/s) •    Cobs - C pred 

300 310 320 330 
Time (s) 

340 
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Figure 12. Time series of cross-shore velocity 50 cm above the sea bed and 
predicted and observed suspended sediment concentration 19 cm above the sea bed. 
Concentrations were predicted using the best model found through exploratory 
modeling, a local linear model with an input of 3 seconds of velocity squared, 
decimated to one point every 1.5 seconds, and a time lag of 1.5 seconds. This 
nonlinear model was able to predict high concentrations that occurred at 310 seconds 
into the record. Intermediate concentrations before and after highest concentrations 
are not well predicted. Correlation coefficient for 794 predicted/observed values is 
0.58. 
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CONCLUSIONS 

(1) Instantaneous horizontal water velocity, or velocity to a power, does not contain 
enough information to predict suspension in the surf zone. Unlike steady uniform 
flow, more than one velocity is necessary to parameterize the pick-up and mixing of 
sediment into the water column. 

(2) Instantaneous acceleration predicts suspension better than instantaneous velocity, 
but neither of the instantaneous models performs as well as models using a sequence 
of velocities. A sequence of past velocities (a velocity history) improves predictions 
of suspension by more fully specifying flow conditions (including accelerations and 
changes in accelerations) responsible for suspension. 

(3) Suspension in the future is better predicted than suspension at the same instant as 
velocity measurements. These lags are largely due to the time for an observed flow 
event to effect the bed and mix sediment upward. 

(4) Nonlinear models relating suspension to velocity do better than linear models 
using the same velocity history. Nonlinear models are able to exploit relationships 
between suspension and velocity history that change for different wave shapes. For 
the environmental conditions of this study, the optimal model used 3 seconds of 
velocity history (approximately 1/4 wave period) and a 1.5 second lag to predict 
suspension. 
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