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SHEAR INSTABILITY OF LONGSHORE CURRENTS: 
EFFECTS OF DISSIPATION AND NON-LINEARITY 

Albert Falques, Vicente Iranzo and Miquel Caballeria l 

Abstract 

The effect of bottom friction and turbulent lateral mixing on shear instability 
of the longshore current is investigated. Transition conditions for this instability 
as a function of non-dimensional parameters related to the basic current, 
topography, bottom friction and lateral mixing are found. A direct nonlinear 
numerical simulation of shear instability is presented. The basic flow is found 
to be supercritical and the amplitude of shear waves can reach at least 20% 
of the basic flow. A small increase in the period due to non-linearity is also 
found. Preliminary results suggest that far from criticality there is an important 
contribution of the instability to the mean flow. Some applications to field and 
laboratory experiments are discussed. 

1. Introduction 

In the presence of a significant wave-driven longshore current, low frequency 
oscillations in the current that are not due to gravity waves may appear. 
These oscillations, called far infragravity waves (FIG waves) because their 
frequency is lower than the infragravity edge waves of the same wavenumber, 
were first observed by Oltman-Shay et al. (1989) as strong fluctuations in the 
time series of longshore and cross-shore velocity components. They appear 
as a meandering in the current that propagates downflow. According to the 
spectral analysis performed by Oltman-Shay and co-workers, they are almost 
non-dispersive with a phase speed proportional to the peak mean longshore 
current, c ~ 0.5 — 0.7 Vmax. Their period and wavelength in natural beaches are 
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Figure 1: Time series of cross-shore (left) and longshore (right) components of 
the current at two alongshore locations. LIP experiment M19, from Reniers et 
al. 1994. 

of the order of 10 sec. and 102 m. respectively. More recently, experiments 
have been conducted in a wave basin (Delft Hydraulics facilities, LIP project 
M19) in order to observe FIG waves in a laboratory beach. Preliminary analysis 
of data in the case of a barred beach profile (Reniers et al., 1994) indicates the 
presence of FIG waves of a period and a wavelength of about 25 sec. and 8 
m. respectively. Time series of alongshore and cross-shore components of the 
current for two different current-meters in two different alongshore positions 
are shown in Fig.l. The incoming waves of a period of 1 sec. and strong 
low frequency oscillations with a period of about 25 sec. may be seen. The 
amplitude of these oscillations in comparison with the peak longshore current 
is of the order of 20% for the cross-shore component and 35% for the longshore 
component. These amplitudes are of the same order of magnitude as those 
observed by Oltman-Shay et al. (1989) at Duck (USA). 
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Bowen and Holman (1989) proposed a theoretical explanation for the FIG 
waves based on an instability mechanism of the mean longshore current. 
According to their theory, the longshore current may be unstable because 
of the shear and this instability may generate growing disturbances that 
progress downflow or shear waves. Their theory was developed using a 
very simplified analytical model that succeded in giving the main features 
of the instability and matched the experimental results of Oltman-Shay et 
al. reasonably well. Nevertheless, their model has a number of limitations 
such as unrealistic geometry, inviscid flow, rigid lid and linearized governing 
equations and several improvements are therefore necessary in order to analyze 
the instability mechanism in more realistic conditions. This has been done by 
Dodd et al. (1992), Putrevu and Svendsen (1992), Deguchi et al. (1992), Dodd 
(1994), Dodd and Thornton (1992) and Falques and Iranzo (1994). 

The first aim of the present contribution is to find general transition 
conditions for shear instability as a function of some non-dimensional 
parameters involving the longshore current, the topography of the beach, the 
bottom friction and the lateral mixing. The second aim is to show how the 
linear stability analysis can be applied to any particular beach, handling actual 
cross-shore profiles of longshore current, bathymetry, bottom friction and eddy 
viscosity. Furthermore, the linear analysis can explain the initial growth and 
propagation of small amplitude shear waves but cannot describe properly the 
finite amplitude shear waves actually observed in Nature. In particular, the 
linear theory cannot predict the amplitude of such shear waves. This requires 
a nonlinear stability analysis which is our third goal. 

The importance of shear instability lies in several factors. The theoretical 
models for the longshore current are usually based on an equilibrium between 
the driving forces from the incoming wave field and dissipative forces from 
bottom friction and lateral mixing. But the possibility of instability in such an 
equilibrium solution indicates that the matter is not so simple and that in some 
cases the longshore current may have a dynamic behaviour quite far from this 
equilibrium. Moreover, as several authors have pointed out (see Putrevu and 
Svendsen, 1992) shear instability can be a mixing factor in the surf zone which 
is quite stronger than the mixing due to wave induced turbulence. 

2. Linear Analysis 

We   consider   the   shallow   water   equations   for   momentum   and   mass 
conservation with a lateral momentum diffusion given by v(x): 

-^- + vjvi<j+grlii = -j\*\vi + -Sijj + -[v({vij + vji-)]ij        t = l,2 (1) 



1986 COASTAL ENGINEERING 1994 

z= -h(x) 

Figure 2: Coordinate system and geometry. 

| + [C^ = o (2) 

Here, x = x\ and y = X2 are the cross-shore and long-shore coordinates (see 
Fig.2) and repeated indexes are assumed to be summed. The derivative with 
respect to Xi has been indicated by the subindex ,i. The total depth is £ = f] + h, 
where h(x) stands for the still water depth and rj(x,y,t) for the free surface 
elevation. We assume a quadratic bottom friction with a Cd(x) coefficient and 
Sij are the radiation stresses. 

We consider a basic undisturbed state which is a steady solution of equations 
(l)-(2) given by vi = 0, V2 = V(x),r] = fj(x), where V(x) is the longshore current 
and 77(2;) the wave set up/down. Then we superpose on the basic flow a small 
perturbation of the form 

eik^-ct\u(x),v{x),r1(x)) 

and upon linearization of the shallow water equations, (l)-(2), we obtain the 
eigenproblem: 

ik(V - c)u + cdVu + gj]x = 

2vxux + z^Usx — k u + ikvx + 2—ux + ik-j-rf) 
H 

Vxu + ik(V — c)v + 2c<iVv + ikgrj •• 

(3a) 

vx(yx + iku) + v(vx 2k2v + ikux J^V + -J-Vx + -yivx + iku))     (3&) 

((u)x + ik(v + ik(V - c)r? = 0 (3c) 

where the subindex x indicates differentiation with respect to x. The eigenvalue, 
c = tj)/k = (u>r +iu>i)/k, is the phase speed, which may be complex. The period 
and the wavelength are given by T = 27r/wr and A = 2ir/k. The total depth is 
given by £ = h(x) + fj(x). In these linearized equations any perturbation in the 
radiation stresses has been neglected. 
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Given any set of current, bathymetry, bottom friction and viscosity profiles, 
and for any wavenumber, k, Equations (3) can be solved numerically by using 
spectral expansions. The details of the numerical procedure can be seen in 
Falques and Iranzo (1992, 1994) or Iranzo and Falques (1992). In that way the 
k — u>r and the k — w; curves, that is, the dispersion and the instability curves 
can be computed. The basic flow is unstable if there is some wavenumber 
with positive growthrate, w; > 0, and stable otherwise. The fastest growing 
wavelength in the linear theory, PGM, can be determined as the maximum 
in the k — u>i curve. Although shear waves observed in experiments have a 
finite amplitude and therefore need a nonlinear analysis, this wavelength, and 
its corresponding period that can be obtained from the dispersion line, are 
expected to give some estimate of the observed wavelength and period. This 
kind of analysis is presented here in two different ways: i) using analitical 
profiles to find general properties of shear instability, ii) using measured profiles 
for some particular beach. 

The motivation for the first aim is as follows. For many Fluid Mechanics 
stability problems such as Rayleigh-Benard convection and Couette flow, there 
are non-dimensional parameters say Reynolds number, Rayleigh number, etc. 
governing the transition between stability and instability and the sequence 
of bifurcations arising from the basic flow (Drazin and Reid, 1981). So far, 
transition conditions as a function of non-dimensional parameters have been 
lacking for shear instability of the longshore current. The latter stability 
problem has two dissipative sources, namely, bottom friction and eddy viscosity, 
which stabilize the flow. Our aim is to find two non-dimensional parameters 
related to bottom friction, viscosity, the current and the topography that govern 
stability. In such a way, transition lines in the plane of both parameters will 
be obtained and these lines will allow for a rough prediction of stability or 
instability for a wide class of beaches. For this purpose we will consider a basic 
current profile given by 

V(x) = ax exp(-(bx)3) (4) 

This profile was suggested by Bowen and Holman (1989) and used by Falques 
and Iranzo (1994). It can be an equilibrium solution of Equations 1-2 for a 
suitable radiation stress distribution. The parameters a,b are related to the 
maximum backshear and to the width of the current trough IQ = 0.69/6 and 
fs — 0.79a where IQ is the offshore distance of the peak of the current and f3 

is the maximum backshear, that is, the maximum shear at the sea-face of the 
current profile. Many realistic current profiles can be roughly fitted by (4) for 
suitable values of a and b. Concerning topography, we will consider the most 
simple situation, that is, plane sloping beach. Also, we will neglect the wave set- 
up/down which, regarding stability analysis, gives just a small correction on the 
total depth, ((x). These simplifications allow us to handle only one parameter 
related to the bathymetry which is the beach slope, (3. So, we assume 
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Figure 3: Dispersion (left) and instability (right) curves for F = 0.3, c<j = 
0,Xi/lo = 1.6, aZo = 3.5 and for several maximum eddy viscosities. 

((x) = h(x) = ftx. Concerning lateral mixing, we consider (see Deguchi et al., 
1992) 

v{x) = um{h(x)/h{xb))
3/2    if    x<xb (5a) 

u(x) = i/me-°('-")    if    x>xb (56) 

Finally, a uniform bottom friction coefficient, cj, has been assumed. Equations 
(3) have been scaled using the cross-shore lengthscale of the current and 
its maximum backshear in such a way that we have taken 6_1 = 1.45Zo as 
lengthscale and a-1 = 0.79/71 as timescale. After this scaling the non- 
dimensional parameters in the equations are the maximum Froude number of 
the basic flow, F = {V(x)/^gh(x))max = 0.63a/\//3gb, the frictional parameter, 
Cd/f3, and the non-dimensional maximum eddy viscosity, e = vmJ'fslg, which 
plays the role of a reciprocal Reynolds number, Re~l. Concerning lateral 
mixing, two more parameters appear: the position of the maximum viscosity in 
comparison with the maximum in the current, xb/lo, and the non-dimensional 
offshore gradient, alo. 

Typical instability and dispersion lines are shown in Figure 3 for increasing 
viscosity from e = 0 up to e = 0.026, with no bottom friction and for F = 0.3. 
The wavenumber k, and the complex frequency w have been scaled to b and 
a. In accordance with previous work, the dispersion relations are quite linear. 
The general trends we have found are that increasing bottom friction and/or 
eddy viscosity results in a decrease in growthrates, u>i, and in a small decrease 
in frequencies. An increase in Froude number decreases instability too. This 
may be because for high Froude number shear instability feeds surface gravity 
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modes so that instability is weakened. These general characteristics may have 
some exception regarding viscosity. When the eddy viscosity distribution has its 
maximum around the maximum in the current profile and has a strong offshore 
decay (large a ) an increase in eddy viscosity can result in a larger growthrate. If 
e goes on increasing, this trend is reversed and stability is finally reached. This 
behaviour can be understood by considering that viscosity has two opposite 
effects: it dampes instability but also has a diffusive effect which propagates 
perturbations and therefore favours instability. Then, when um increases from 
a very small value the viscosity in the sea face of the current profile still remains 
negligible at the beginning, whereas it reaches significant values at the shore 
face of the profile. Since the source of the instability is mainly located in the 
sea face (in the region where the backshear is maximum) the damping effect is 
therefore negligible. On the other hand, the diffusive effects at the shore face can 
be important. If vm continues to increase, the values of v(x) near the maximum 
backshear become large enough so that the damping effect become dominant. 
This is in contrast with the effects from bottom friction. Dodd (1994) found 
that there may be destabilizing effects due to bottom friction (curvature terms) 
but that the overall effect was a stabilizing one. In fine with his results, we also 
find that the overall influence of bottom friction on shear instability is always 
a stabilizing one. 

In any case, for each set of values of -F, Xb/lo,alo and for each c^//? we find a 
critical value of e such that instability requieres lower values. We thus obtain a 
stability diagram in the e — c^/0 plane with transition fines that bound stability 
and instability regions. These fines are shown in Fig.4 for F = 0.14, F = 0.3 and 
F = 0.89. We have set x^/lo = 1.6 and alo = 3.5. Very small sensitivity has been 
observed to the latter two parameters, except for the case xi,/lo — 1 and large 
alo described above, which is not very realistic because x\, is usually expected 
to be offshore of the maximum in the current. As can be seen in Fig.4, for small 
Froude number instability is almost insensitive to Froude number. However, for 
high values some sensitivity appears and the stability region is widened. 

Some experimental data sets have also been plotted in Fig. 4. This is not 
an easy job as only crude estimates of c<j, v are available, the actual current 
profiles are usually rather far from (4) even for suitable a,b and we have to 
rely on a mean beach slope, /?. Though these limitations result in large error 
bar we think that the diagram can be useful in giving a rough prediction of 
stability or instability. Four data sets have been represented: Duck (USA), 
Leadbetter (USA), wave-basin experiment (LIP project M19, The Netherlands) 
and Trabucador (Ebro Delta, Spain). The experimental information was taken 
from Dodd et al. (1992), Reniers et al. (1994) and Redondo et al. (1994). 
The lateral mixing was estimated according to Deguchi et al. (1992). The 
most stable situation corresponds to Leadbetter beach and indeed no evidence 
of shear waves was found at this site. On the other hand, the diagram predicts 



1990 COASTAL ENGINEERING 1994 

0.04 

0.03 

(NO 
0) 

0.02- 

0.01 

0.00 
0.00 0.15 0.05 0.10 

cd//? 
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instability for Duck data set in agreement with observations (the maximum 
Froude number did not exceed 0.3). The Trabucador data set also leads 
to instability according to the model. A complete data analysis is not yet 
available (Delta'93 campaign). However, a preliminary inspection indicates the 
presence of low frequency oscilations that might be shear waves. Regarding the 
wave basin experiment, the maximum Froude number reached F = 0.7, so the 
corresponding box in the diagram would match the transition line that would 
be somewhere in between the F = 0.3 and the F = 0.89 lines. Therefore, no 
conclusive analysis can be made by this way in this case and a detailed numerical 
simulation for the actual V(x),((x),Ci(x) and v{x) profiles is necessary. In any 
case, if we want a more accurate prediction of instability, with the period and 
wavelength of the shear waves, this computation for the actual profiles is needed. 
This kind of analysis has been made for Trabucador Beach, and for the wave 
basin experiment. Although a detailed analysis of the results of this latter 
experiment is under way, some preliminary results are already available. For 
instance, measurements from the longshore array of currentmeters for one of the 
tests with barred beach indicated the presence of shear waves with a period of 
approximately 25sec. and a phase speed of 0.33m/.s, giving rise to a wavelength 
of 8.3m. In this case, a dominant mode with a wavelength of 2irjk = 7.3m and a 
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period of 2ir/oor = 27sec. was obtained from the numerical model. Experiments 
and theory were thus found to be in a fairly good agreement. 

3. Nonlinear Stability 

Only a preliminary study of the nonlinear shear instability is currently 
available, and a much more detailed analysis is under way. For this preliminary 
study, some assumptions have been made: plane sloping topography, uniform 
bottom friction and viscosity coefficients, a basic current given by (4) and the 
rigid lid assumption, that is, the vertical fluxes are much smaller than the 
horizontal ones (Bowen and Holman, 1989). Falques and Iranzo (1994) showed 
that rigid lid hypothesis was a suitable one for low Froude number so that 
for F up to 0.6 only a correction less than 12% was necessary in growthrates. 
Therefore, rigid lid assumption is not a severe restriction for natural beaches. 
A further assumption regarding the mean flux that will be specified later on 
has been taken into account. The mass conservation equation (2) and the rigid 
lid hypothesis allow us to use a streamfunction for the perturbation, xj)(x,y,t), 
defined by: 

V1 = h-dy-   '   V2 = v{x)-hdx- (6) 

Then, by taking the curl of the momentum equations (1) we end-up with a 
single governing equation which is 

C^ = M^ + A/(i>) (7) 

where the linear operators C and Ai are given by 

m   =   -VClPy   + i,yCV +   ~-(2^„   + j,„   + 2(^   - 2^ty„) + 

+"((y).(<ty + l^vv) + yW). + A(CV)) 

and the nonlinear operator Af is given by 

MM = \iixCiy - i>y(W)* + j;i>yCi>) 

The subindices x,y mean derivative with respect to x or y and the operator 
A is the 2D horizontal Laplace operator. The operator C applied to i/> gives 
the vertical component of the vorticity. Hereafter, the scaling introduced in 
Section 2 is used. Equation (7) has to be solved in the domain x, y S (0,+oo) 
x (—oo,+oo). However, for technical reasons the cross-shore domain has been 
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cut off at some suitable offshore position, x = I. A comparison between the 
spectrum of the linear part of (7) and the spectrum of (3) solved without this 
restriction shows that the error remains very small if / is large enough compared 
to the width of the current. A suitable value has been / = 6. The boundary 
conditions at the shoreline and far offshore are: 

i/> = ij,x=0        x = 0,x = l (8) 

Periodicity conditions with respect to some basic wavelength, Ao = 2TT/KO, have 
been used as boundary conditions regarding the longshore coordinate. The 
boundary conditions at x = I just mean vanishing cross-shore and longshore 
velocity perturbations far offshore. Concerning the shoreline the matter is not 
so simple because of the singularity coming from h(0) = 0. The set of boundary 
conditions chosen at x = 0 ensures a bounded velocity field at the shoreline and 
it means vanishing mass transport. 

Equation (7) has been solved numerically using a spectral Chebyshev-Fourier 
expansion 

k=n—1   m 

i>(x,y,t)= £ j2akJ(m^ykKoy (9) 
k=—n j=0 

where Tj(x) are Chebyshev polynomials. After spatial discretization which is 
performed by Galerkin projection concerning y and by collocation concerning 
x, Equation (7) reads as a set of 2n vector ordinary differential equations (one 
for each alongshore Fourier mode) 

Ck-jr = Mkak + Nk(a-n...ao...an-i)       k = -n,...,n-l (10) 

where the (ro + l)x(ra + 1) matrices Ck,Mk and the vector functions Nk are 
the discrete versions of operators C,A4,Af for each Fourier mode, k, and where 
<** = {aokia\ki •••amk) stands for the m +1 Chebyshev coefficients of the Fourier 
mode k. The equations corresponding to each Fourier mode are coupled only 
because of their nonlinear terms, A/jfe- Time discretization proceeds by using a 
semi-implicit Euler scheme 

(Ck-6tMk)SZ+1=Cka[ + Htfk(aLn...a^1)       k = -n,...,n-l      (11) 

Given the solution a£ at time step r, Eq.ll is linear in a£+1 and can be easily 
solved. More details and references on numerical spectral methods applied to 
coastal dynamics may be seen in Falques and Iranzo, (1992, 1994) or in Iranzo 
and Falques (1992). 

Some sensitivity tests concerning the parameters of the numerical model 
were made. The model proved to be quite robust and the values of m = 40, n = 
8, St = 0.01 were found to be suitable for the preliminary study made up to 
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Figure 5: Time evolution from a small initial perturbation for e = 0.053, fj, = 
11.1. Time series of cross-shore and longshore velocity components (left) and 
final steady oscillation in the longshore component (right). 

now. Owing to the linear theory outlined in Section 2 the control parameters 
for instability are the frictional parameter, fi — P/cj, and the non-dimensional 
viscosity, e = vm/fal\. Time evolution from some initial perturbations has been 
computed for several values of e,/x. For any e, a critical value fxc was found to 
exist such that below it all the perturbations tend to vanish whereas above it 
the perturbations grow. At the beginning this growth is nearly exponential but 
then a saturation is reached and a final oscillatory solution is obtained. For 
fi slightly higher than fic its period is very close to the period predicted for 
the linear theory. The critical value, /J,C, coincides with that given by the linear 
analysis. For instance, for e = 0.053 the transition occurs at fic = 10.0. One test 
slighly above critical conditions (/J, = 11.1) is shown in Fig. 5. These results 
show that shear instability of the longshore current gives rise to a supercritical 
Hopf bifurcation and are in line with the weakly nonlinear analysis carried out 
by Dodd and Thornton (1992). Far from criticality the behaviour may be quite 
complicated: an energy transfer between Fourier modes occurs, the FGM mode 
may be no longer dominant, the final steady wave may be modulated... A 
further increase in \x leads to a blow-up of the numerical model. For e = 0.053 
this occurs for /x > 20 and may be due to numerical instabilities that might be 
due in turn to a further bifurcation in the physical problem. This is currently 
being investigated. An example of the strongly nonlinear behaviour is shown 
in Figure 6 by means of a time evolution from a small initial perturbation for 
e = 0.053,fj, = 20. In this test, the basic wavenumber has been chosen to be 
KQ = 0.467, that is, one third of the FGM (linearly dominant) which is 1.4. 
This means that the FGM mode corresponds to k = 3 so that the simulation 
uses two subharmonics in addition to the superharmonics. As we can see, the 
first mode to grow significantly is k = 3. Apparently, it reaches a saturation. 
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Figure 6: Time evolution of the FGM, k = 3, its subharmonic k = 2 and its 
superharmonic k = 4 from a small initial perturbation for e = 0.053, fi = 20. 
The basic wavenumber is JRTO = 0.467. 

However, it slowly looses part of its energy by feeding the other modes, specially 
the k — 2 subharmonic and the k = 0 mode. Finally, the other modes reach 
a saturation and a final steady modulated oscillation in all modes starts. The 
time unit in all these plots is the timescale defined in Section 2 and based on 
the maximum backshear of the basic flow. For natural beaches, 10 units may be 
of the order of lmin. Therefore, our numerical time series of 10000 time units 
would represent a real time of 16 hours. This is quite enough for shear wave 
simulation. 

According to the numerical experiments performed some preliminary 
properties of finite amplitude shear waves can be summarized. For each set 
of values of /x, e the final finite amplitude shear waves has been computed from 
several initial conditions and no sensitivity to the initial conditions has been 
found except in the parameters range where the numerical model blows up. As 
expected, the flow pattern corresponding to the perturbation for near critical 
conditions is very similar to the linear eigenfunction although some asymmetry 
between crests and troughs can be noticed. However, far from criticality the 
streamlines are quite different from the linear ones, showing a strong mean flow 
component (Fig. 7). This component comes from the 0 Fourier mode and 
means a correction on the mean flow due to the instability. Because of the 
boundary conditions at the shoreline (8) the mean alongshore discharge due 
to the perturbation vanishes, i/>(l,y,t) — ij>(0,y,t) = 0. This is an unphysical 
constraint on the mean flow and has been taken because of technical reasons 
concerning the boundary conditions and the numerical procedures. Work is 
under way in order to relax this constraint by considering boundary conditions 
(8) only for k ^ 0. However, the present results already suggest that the mean 
flow component of the perturbation is not very important for near critical 
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Figure 7: Streamlines of the perturbation, (A): near critical conditions (e - 
0.053, fi = 11.1), (B): strongly nonlinear (e = 0.053,/i = 20.0). 

conditions but can have a strong influence far from criticality. The amplitude 
of shear waves can be defined, for instance, as the fluctuation in the cross-shore 
component in comparison with the mean longshore current. This ratio has been 
plotted in Figure 8 as a function of the control parameter \i for e = 0.053. This 
provides us with a bifurcation diagram for shear instability. Notice that this 
amplitude can reach 20%, that is, the same order of magnitude as the amplitudes 
measured at Duck (Oltman-Shay et al., 1989) or in the LIP experiment (Reniers 
et al., 1994). This is in contrast with the weakly nonlinear analysis of Dodd and 
Thornton (1992), where only amplitudes of about 0.07% were obtained. The 
curve stops when the numerical model breaks down. Intriguingly, this occurs 
roughly when the amplitude of shear waves reaches the maximum value observed 
in experiments, u/Vmax ~ 0.2. The relationship between the final amplitude and 
the linear growthrate is shown in Figure 9. In qualitative agreement with the 
weakly nonlinear theory a small nonlinear correction on the period of the shear 
waves has been found. The relative increase, shown in Figure 9, can reach 6%. 

4. Conclusions 

Analytical profiles for the current, eddy viscosity and bottom friction 
coefficient, and a mean beach slope have been used to investigate the general 
trends for shear instability of the longshore current. The overall influence of 
bottom friction and lateral mixing is a stabilizing effect and a small decrease 
in the frequency of shear waves. However, for some eddy viscosity profiles this 
trend is not monotone and an increase in viscosity may eventually result in 
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Figure 8: Bifurcation curve showing the amplitude of the crossshore fluctuation 
in the current with respect to the mean longshore current for e = 0.053. 
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Figure 9: Left: amplitude of the final shear wave as a function of the linear 
growthrate. Right: Relative increase in the period of the shear wave as a 
function of the amplitude.(e = 0.053). 

larger growthrates. An instability diagram as a function of two non-dimensional 
parameters related to bottom friction, lateral mixing, the current and the 
bathymetry has been presented. This diagram allows for a rough prediction 
of shear stability characteristics for any beach and has been found to compare 
fairly well with four experimental data sets. A more accurate study of shear 
instability for a given situation requires the use of the actual profiles. This has 
been done for a wave basin experiment and a good agreement between numerical 
modelling and measurements has been found. A nonlinear numerical simulation 
has also been conducted. In accordance with the weakly nonlinear theory (Dodd 
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and Thornton, 1992) shear instability has been found to give finite amplitude 
waves through a supercritical Hopf bifurcation. However, the amplitudes are 
larger than the weakly nonlinear ones and reach at least 20% of the mean 
current. A small nonlinear correction on the period has also been found. Far 
from critical conditions shear waves can exhibit a complicated behaviour, with 
a modulation and with a flow pattern rather different from that predicted by 
the linear theory. Preliminary results suggest that for the strongly nonlinear 
situation there can be an important contribution of instability to the mean 
current. 

References 

Bowen A.J. and Holman R.A., 1989. Shear instabilities of the mean longshore 
current, 1. Theory, J.Geophys.Res. 94, C12, 18023-18030. 

Deguchi I., Sawaragi T. and Ono M., 1992. Longshore current and lateral 
mixing in the surf zone. Proc.23th Int. Conf. Coastal Eng., 202, p.2642-2654. 

Dodd N., Oltman-Shay J. and Thornton E.B., 1992. Shear instabilities in the 
longshore current: a comparison of observations and theory, J.Phys.Oceanog. 
22, 1 , 62-82. 

Dodd N. and Thornton E.B., 1992. Longshore current instabilities: growth to 
finite amplitude. Proc.23th Int.Conf.Coastal Eng., 203, p.2655-2668. 

Dodd N., 1994. On the destabilization of a longshore current on a plane beach: 
Bottom shear stress, critical conditions, and onset of instability, J.Geophys.Res., 
99, Cl, 811-824. 

Drazin P.G. and Reid W.H., 1981. Hydrodynamic Stability. Cambridge 
University Press. 

Falques A. and Iranzo I., 1992. Edge waves on a longshore shear flow, 
Phys.Fluids A, 4 (10), 2169-2190. 

Falques A. and Iranzo I., 1994. Numerical simulation of vorticity waves in the 
near-shore, J.Geophys.Res., 99, Cl, 825-841. 

Iranzo V. and Falques A., 1992. Some spectral approximations for differential 
equations in unbounded domains, Comp.Meth.Appl. Mech.Eng., 98, 105-126. 

Oltman-Shay J., Howd P.A.and Birkemeier W.A., 1989. Shear instabilities of 
the mean longshore current, 2. Field observations, J.Geophys.Res. 94, C12, 
18031-18042. 

Putrevu U. and Svendsen I. A.,1992. Shear instability of longshore currents: A 
numerical study,   J.Geophys.Res. 97, C5, 7283-7303. 

Redondo J.M., Rodriguez A., Bahia E., Falques A., Gracia V., Sanchez-Arcilla 
A. and Stive M.J.F., 1994. Image analysis of surf zone hydrodynamics, Coastal 
Dynamics'94, p.350-365. 

Reniers A.J., Battjes J.A., Falques A. and Huntley D.A., 1994. Shear-wave 
laboratory experiment, Proc.Int.Symposium: waves - physical and numerical 
modelling, vo.l, 356-365. 




