
CHAPTER 125 

WAVE ACTION ON AND IN PERMEABLE STRUCTURES 

M.R.A. van Gent1, P. Tonjes2, H.A.H. Petit3 and P. van den Bosch3 

ABSTRACT: A numerical model that can simulate plunging waves on 
permeable structures is described. The 'Volume Of Fluid' method is used 
to solve the two-dimensional (2D-V) incompressible Navier-Stokes 
equations. After implementation of porous media flow for applications with 
permeable structures, the model has been verified by using several 
analytical solutions and by comparisons with physical model tests to study 
breaking waves on and inside permeable structures. 

INTRODUCTION 

Wave motion on permeable structures has often been studied using physical 
models. Small-scale physical modelling is influenced by scale effects while large- 
scale modelling is relatively expensive. Apart from this, measurements within 
breaking waves can be very complex. Therefore, numerical models simulating 
individual breaking waves are valuable design and research tools for studying wave 
motion on and inside coastal structures. 

The description of breaking waves, the interaction with the porous part of 
permeable structures and the verification of the implementation of the most 
important phenomena involved, require a considerable amount of research of which 
some aspects are treated here. The numerical model described here (SKYLLA) was 
verified for breaking waves over a submerged bar, described in Van Gent et al. 
(1994-a). Other research concerning this numerical model, including the in- and 
outflow boundaries as well as the description of impermeable slopes were presented 
by Van der Meer et al. (1992) and Petit et al. (1994-b). 

After a description of the numerical model and the method to solve the Navier- 
Stokes equations, adapted Navier-Stokes equations for porous media flow will be 
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given. The implementation of these are validated using both analytical solutions and 
physical model tests. The physical model tests are performed with a Berm 
breakwater where surface elevations, velocities and pore-pressures are measured. 

NUMERICAL MODEL 

Several models to simulate breaking waves have been made. For instance Vinje 
and Brevig (1981) used a potential flow model and modelled a plunging wave until 
the overturning wave hits the trough water. Sakai et al. (1986) applied the MAC- 
method to simulate breaking waves. Here, the 'Volume of Fluid' (VOF) method by 
Hirt and Nichols (1981) is used to solve the Navier-Stokes equations in two 
dimensions. This powerful method enables simulation of complex flow patterns 
including those where the free surface can become multiply connected. To achieve 
this, the treatment at the surface based on the adapted flux-method known as FLAIR 
by Ashgriz and Poo (1991), has been improved. Figure 1 shows that an overturning 
wave on an impermeable slope can be simulated by applying the Navier-Stokes 
equations solved using the voF-method. 

^*P~~" 
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Fig.l     Simulation of a breaking wave on an 
impermeable dike with a berm. 

The voF-method is a method where for each cell the fluid fraction can vary 
between zero (empty) and one (full). Fluid fractions are transported between each 
cell and its surrounding cells. In Figure 2 the principle of the method is shown for 
the transport between two neighbouring cells. Based on the two fluid fractions of 
two neighbouring cells, a 'local surface' can be constructed. By using the velocity 
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and the time-step (varied based on the instantaneous stability and accuracy criteria), 
a part of the fluid is transported between these two cells. In the numerical model 
this is done using a non-equidistant staggered grid. 
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Fig. 2    Transport of fluid based on the vOF-method. 

The velocity as used in the VOF-method is obtained from the discretisation of 
the Navier-Stokes equations. At impermeable slopes and at the free surface not all 
velocities necessary to discretise the equations are within the fluid domain. Figure 
3 shows the required velocities for discretisation inside the fluid (A) and near the 
free surface (B). Boundary conditions are required to fill the lack of information at 
the free surface. For instance one can assume no gradient in the velocities at the 
surface or that the flow is irrotational at the surface. 

A) B) 

Fig. 3    Required information for discretisation of horizontal velocities. 
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Two open weakly-reflecting boundaries can be used at which regular wave 
trains can both be generated and absorbed. The incoming non-linear waves are based 
on the theory by Rienecker and Fenton (1981). The boundary for impermeable 
slopes are defined on sub-grid level which means that the slope can intersect cells 
(no 'stair-case' slope). At impermeable slopes no-slip or free-slip boundaries can be 
applied. In Van Gent et al. (1994-a) two weakly-reflecting boundaries were applied 
for wave breaking over a submerged bar schematised with a free-slip boundary. The 
comparison of these computed breaking waves with video images showed that 
plunging occurs at the same position as in the physical model tests. Although the 
decrease in wave height occurs somewhat quicker in the numerical model than in 
reality, the height of the transmitted wave is accurate. Here, after implementation 
of porous media flow, breaking waves on permeable structures will be verified. 

IMPLEMENTATION OF POROUS MEDIA FLOW 

The voF-method can also be applied for solving the wave motion inside 
permeable structures. The momentum equations, however, are different from those 
for the external wave motion. The Navier-Stokes/Reynolds equations for the external 
wave motion read: 

du du2 duw 1   dp 
dt dx          dz pw dx 

dw duw dw2 1   dp 
dt dx          dz p    dz 

d2u   t   d
zu 

dx2  +  dz2 
gx - 0 (1) 

d2w       d2w I n n\ 
+ —-    + g   = 0 (A> 

dx2     dz2 I     z 

where « and w are the velocities in the x and z direction respectively and vt the 
eddy-viscosity for which a constant value will be used. Together with conservation 
of mass (du/dx+dw/dz=0), which is satisfied by solving the Poisson equation, and 
boundary conditions, the VOF-method can then be applied yielding the external wave 
motion. For the internal wave motion adapted Navier-Stokes equations were derived 
(see Van Gent, 1991): 

L
+C

A du      1 , du2     duw.       I   dp ,      n~i T\ n       /-><.  + — ( +  ) + i- +gau +gbu \j(ui+w1)+g= 0       (3) 
n     dt      n2    dx        dz pw dx 

l+cAdw     1  , duw    dw2.       I   dp ,     n~i      57 n        ,A\  —+ — (—— + ——) + — -f +gaw +gbw\j(u2 + w2)+g= 0       (4) 
n     dt    n

2     dx        dz pw dz 

where u and w are both filter-velocities, a and b are dimensional friction coefficients 
and cA is a coefficient to take the phenomenon added mass into account. Because 
filter/discharge velocities are used, the procedure to transport mass between the 



WAVE ACTION 1743 

cells, the voF-method, does not require any adaptation. The discretisation (partial 
upwind scheme) and stability criteria are described in Van Gent et al. (1994-b). In 
the computational domain numerous regions with different properties can be selected 
and awarded a certain porosity and stone diameter. The permeable slopes are not, 
like for impermeable slopes, defined on sub-grid level which means that the 
properties cannot be varied within one cell. Permeable slopes can also be combined 
with impermeable regions. This implementation of permeable parts in this two- 
dimensional model, therefore, enables applications with breaking waves and other 
complex flow patterns for a very wide range of structure types. Here, some 
validation tests will be discussed. For some other applications see for instance Van 
Gent and Petit (1994). 

VALIDATION WITH ANALYTICAL SOLUTIONS 

Several verifications of the implementation of porous media flow have been 
performed. Before the wave motion on and inside a permeable structure is verified 
using physical model tests, three comparisons with analytical solutions are carried 
out. The first case concerns a layer of water with a thickness L that is initially 
positioned above a dry permeable part, see Figure 4. At t=0, the layer of water 
starts entering the permeable part. For this simplified case of uniform flow entering 
a permeable part (-L<x0<0), the Navier-Stokes equations reduce to a set of one 
dimensional differential equations (Van Gent et al., 1994-b) where u is the filter- 
velocity, n the porosity and x0 the position of the free surface, at t—0, x0—-L: 

- ^ ( L + x0 ) ( a u + b u1 - 1 ) - ( -1 - 1 ) u2 - g x0 

*«  - —? n-  (5) 
dt L + xQ 

With dx0/dt—u, this set of differential equations was solved using a fourth-order 
Runge-Kutta method with At=0.005 s and Ax=0.05 m while for the constants L, 
n, g, a, b the values 0.5 m, 0.5, 4 m/s2, 0 s/m and 16.9 ^/m2 were used 
respectively (for g, 4 m/s2 is taken instead of 9.81 m/s2 to exaggerate the local 
maximum in Figure 4). After the layer has entered the permeable part, the 
differential equation reduces to: du/dt=ng(l-au-bu2) for which an analytical solution 
was found: 

u(t) =(u,-u"(t°)'Ule-'"'s(u^)(t-'A /(1-"
(fo)"'''e-^.-^"V 

{ "Co) ""2 )'   [ «(^)-«2 j 
(6) 

where u1=-a/2b + V(a2+4b)/2b, u2=-a/2b-V(a2+4b)/2b and u(t0) is the initial 
velocity at t~t0 where t0 is the moment at which the whole layer of water has 
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VELOCITY OF ENTERING LAYER OF WATER 

Fig. 4 Comparison of numerical model results with solutions of simplified 
differential equations for the velocity of a layer of water entering 
a porous block. 

PRESSURE JUMPS AT POROUS INTERFACE 

X-AXIS (m) 

Fig. 5    Calculated pressure jumps at the interfaces of a porous block with 
a steady flow. 

entered the permeable part. Figure 4 shows the comparison of the numerical results 
and these solutions. At t=0, the velocity is zero, at t=0.435 s a local maximum of 
u=0.6848 mis occurs and at t=0.850 s (t0) the layer has entered the permeable part 
after which the velocity rapidly converges to the velocity 0.75 mis. The difference 
between the numerical model results and the solutions of the set of simplified 
differential equations reaches a maximum of 0.0129 mis at t=0.4 s. As shown in 
Figure 4, the phenomenon is reproduced with good result. 
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A second verification concerns the flow through a saturated permeable block, 
see Figure 5. At x=0 a constant inflow with a velocity of 1 m/s is produced, 
between x = l m and x=2 m a saturated permeable block is positioned. The pressure 
jumps at the porous interfaces (x=l m and x=2 m) can be determined analytically. 
Integrating the momentum equation for a uniform flow in the x-direction yields: 

P (x2 + 5x) - P (JC,-5X) = 

1 bx g (au+bu2+2) + (1+- 
1+c A) §E 

dt  j 

(7) 

where x2 is the position of the outflow boundary (x=2rri). The same procedure can 
be used at the inflow boundary (x=l m). The pressure jump is then equal to the one 
at the inflow boundary, except for the sign. Outside the stone the pressure is 
determined by 8P/dx=-g while inside the stone the pressure gradient can be assessed 
through dP/dx=-g(au+bu2+l). In Figure 5 the comparison between the analytical 
solution and the numerical results is shown. Some arbitrary values for the constants 
n, a, b and g were used (0.5, 1 s/m, 0.75 s*/m2 and 2 m/s2 respectively). Because 
in the numerical model the pressure jumps are simulated in steps of 3Ax, 8x=3/2Ax 
is used in the analytical solution (Equation 7) for comparison with the numerical 
model results. The pressure jumps by the analytical solution and the numerical 
model results were 2.4375 m2li and 2.5065 rtfls2 respectively. This comparison is 
again rather good. For 8x 10, the real analytical solution gives 3 m2/s2 to which the 
numerical model results will come close for smaller values of Ax. 

PHREATIC SURFACE IN POROUS BLOCK 

ANALYTICAL 

NUMERICAL 

Fig. 6    Comparison of numerically computed phreatic surface and an 
analytical solution. 

A third analytical solution has been compared with numerical model results. 
Now, a stationary flow through a rectangular block with only linear porous friction 
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(b=0) has been examined. Neglecting convection and assuming hydrostatic 
pressures and uniform flow over the depth, the solution for the phreatic surface is 
determined by h(x') ^ (H2-x7L(H2-H2

2)) where H, is the free surface level at the 
inflow boundary (left in Figure 6), H2 is the free surface level at the outflow 
boundary and L the length of the permeable block (for Figure 6: x'=x-2). Some 
arbitrary values for the constants n, a, L and g were used (0.2, 4.0 s/m, 6.0 m and 
10 mis2 respectively). The levels H, and H2 where 2.0 m and 1.0 m respectively. In 
the numerical computation, Ax=0.1 m has been used. The phreatic level was 
defined as the level where in the computation 50% of the cell was filled with water 
(F=0.5). Differences between both phreatic surfaces at x=2, 4, 6 and 8 m in Figure 
6 were 0.0233, 0.0206, 0.0105 and 0.0234 m, respectively. 

VALIDATION WITH PHYSICAL MODEL TESTS 

By means of the numerical model complex phenomena such as scale effects, 
wave transmission, the effects of non-stationary porous media flow, added mass and 
forces on stones can be studied. However, a verification with physical models must 
be performed first. 

Non-stationary porous media flow tests have been performed in a U-tube tunnel. 
These measurements resulted in expressions for the porous media flow friction- 
coefficients a, b and cA in Equations 3 and 4, see Van Gent (1994). For the 
dimensional coefficients a and b, theoretically derived expressions are used: 
a=a • (1-n) 2/n3 • v/gDn50

2, b=0 • (1 -n)/ns- v/gDn50 and cA=y -(l-n)/n. The physical model 
tests showed a dependency of fi on the flow field, accounted for by including a 
dependency of 0 on the /sTC-number, 0=0C (1 + 7.5/KC), where KC=UT/nDnS0 and 
0C=1.1. In the computations with the numerical model this has been included by 
estimating a representative filter-velocity t) beforehand and using the wave period 
for r. 
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Fig. 7    Cross-section of the Berm breakwater in experimental set-up. 
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A second series of physical model tests was performed to verify the numerical 
model. A small-scale model of a Berm breakwater was used for this purpose. Figure 
7 shows a sketch of the experimental set-up with the initially horizontal berm at a 
level of 0.80 m, the still water level being 0.75 m. All slopes were 1:1.5 except for 
the submerged seaward slope which was 1:1.25. The size of the stone material was 
Dn50=0.0266 m in the cover layer and Dn50=0.0175 m in the core. The porosity of 
the two permeable parts were measured in situ, both giving n=0.417. Reshaping the 
seaward profile was achieved by four series of 1000 regular waves. After the last 
series, with the largest waves, the seaward profile was reshaped while the crest was 
heightened from 0.95 m to 1.00 m. Several series of regular waves were used to 
study the flow field. No reshaping took place during these tests. The flow field was 
recorded using a video, electro-magnetic flow meters (EMF), wave gauges and 
pressure transducers. The positions of the pressure transducers are indicated in 
Figure 7. 

Surface elevations above the seaward slope were determined at ten points of 
time within a wave cycle for four series of regular waves: ¥1=0.119 m, T—1.5 s; 
H=0.230 m, T=1.5 s; H=0.112 m, T=2.1 s and H=0.217 m, T=2.1 s. The 
computational domain in the numerical model started at 4 m in front of the toe of 
the reshaped structure where the waves were generated at this weakly reflecting 
boundary by applying the method by Rienecker and Fenton (1981) using 16 Fourier- 
components. This method was adapted to deal with reflected waves as described in 
Petit et al. (1994-a). No net transport was allowed through this boundary. At the 
landward boundary again a weakly reflecting boundary was positioned at 7.5 m 
behind the crest of the structure. In x and z-direction, 270 and 80 computational 
cells were used respectively. The computations were performed with a constant 
viscosity v,=0.005 m2/s. In the discretisation of the equations an up-wind fraction 
of 0.2 was used. Surface elevations were defined at positions of cells which were 
filled with fluid for 50%. After an adjustment time of six to eight waves to obtain 
a periodic computation, data was used for comparison with the measured properties. 

Figure 8 shows comparisons of surface elevations for ten points of time for two 
wave conditions with a wave period of 1.5 s (five surface profiles per graph with 
0.15 s in between two profiles). Only the surface elevations above the berm, where 
the waves are breaking, are shown since in the section in front of the structure only 
minor differences in wave height occur. Also for the two wave conditions with a 
wave period of 2.7 s, as shown in Figure 9 (0.27 s in between two profiles), the 
comparisons for the five profiles in the first half of each wave cycle show good 
agreement (upper graph for each wave condition). In the second half of each wave 
cycle (lower graph for each wave condition) considerable air-entrapment occurs for 
the two highest waves. In the figures with measured surface elevations the position 
of entrapped air is indicated by the area in between the two lines of each surface 
profile. The comparisons with the computed results become rather complex in this 
part since the exact position of the free surface is not clear. However, the 
comparisons indicate that the decrease in wave height above the berm faster occurs 
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Fig. 8    Comparison of measured (left) and computed (right) surface elevations. 
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Fig. 9    Comparison of measured (left) and computed (right) surface elevations. 
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in the computation than observed from the measurements. It seems as if this 
overestimated reduction in wave height, possibly due to a too large dissipation, leads 
to an underestimation of the run-up levels. For the two wave conditions with smaller 
waves, the comparisons are also rather good in the second half of the wave cycle. 

For all four wave conditions 11=0.119 m, T=1.5 s; H=0.230 m, T=1.5 s; 
H=0.112 m, T=2.1 s; H=0.217 m, T=2.1 s, the computed run-up levels are too 
low compared with the measured run-up levels: 0.07vs. 0.10; 0.14 vs. 0.21; 0.08 
vs. 0.11 and 0.18 vs. 0.27 m, respectively. All these values are relative to the 
average water levels in front of the structure during testing. The choice to define the 
surface elevations at the positions of cells that are filled with water for 50% instead 
of another percentage, might influence the computed run-up levels slightly. If for 
this definition positions of cells that are filled with water for 10% are regarded as 
surface elevations, the computed run-up levels might increase but not so much that 
they would fit to the measured run-up levels. The dissipation in the 
computedbreaking process, by the description of the physical processes or by 
numerical dissipation, is assumed to cause these underestimated run-up levels. 

Comparisons between measured and computed velocities were made. Because 
of air-entrainment the position closest to the crest without this difficulty was at 
x-21.6m, z=0.65 m. For three waves the comparisons for both the horizontal (u) 
and the vertical (vt>) velocities are shown in Figure 10. The comparison for the 
fourth wave (H=0.217 m and T=2.1 s) was not possible because in the physical 
model this position was dry for some period within a wave cycle causing severe 
disturbance of the measured signal. The comparisons for the other three waves show 
accurate results for both the horizontal and vertical velocities. 

1 .oo 

0.50 

O.OO 

-0.50 

-1 .OO 

M \ W   / 

V2 

-^N^f" 
\    ,-j ^<^ 

If K 

u 
O.O      0.5       1 .O       1.5      2.0       2.5       3.0 

TIME   (s) 

V3 

o 25 //\ w   ,y* 

o OO rV. 
^^z- / N--^ 

o 25 

V u 
V 

O.O    0.6     1.2     1 .8    2.4    3.0    3.6    4-2 
TIME   (s) 

Vl:H=0.119m, T=1.5 s. 
V2: H= 0.230 m, T=1.5 s. 
V3: H=0.112m, T=2.1 s. 

Fig. 10        Comparison of velocities at x=21.6 m and z=0.65 m; measured 
(dashed) and computed (lines). 
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Fig. 11 Comparison of pressures; measured (dashed) and computed (lines), 
H=0.217m, T=2.1 s. 

Also comparisons between measured and computed pressures were made. Figure 
11 shows the signals from the eight transducers and the computed pressures at the 
same positions. The positions of these transducers are shown in Figure 7. 
Transducer P4 is positioned in between the transducers P3 and P6. The recorded 
pressures by transducer P4, however, clearly deviate from those recorded by P3 and 
P6. Because no decisive physical explanation can be given for these low pressures, 
estimated to be roughly 50% of the expected pressures for all analysed wave 
conditions, the signals of transducer P4 are highly questionable. The comparisons 
with the other transducers are fairly accurate except for those with transducer P8. 
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Both the internal set-up as recorded by transducer PI (average level) and the internal 
wave height are reproduced with a high accuracy. The computed signals at positions 
just below the breaking waves, transducers P2, P3 and P6, also show good 
correspondence with the measured signals although these measured signals show 
more higher-order fluctuations. 

CONCLUDING REMARKS 

A numerical model solving the two-dimensional Navier-Stokes equations for 
simulating normally incident waves, including breaking waves, has been extended 
with porous media flow. The implementation of the combined external and internal 
wave motion on and inside permeable structures was successful as shown by 
comparisons with both analytical solutions and physical model tests. The model, 
now capable of providing a detailed flow description of breaking waves on 
permeable structures, will, however, be improved by including more sophisticated 
modelling of air-extrusion and turbulence. Furthermore, irregular waves will be 
implemented. 
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