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Numerical Modelling of Breaking Wave Impacts 

on a Vertical Wall 
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Abstract 

The impact processes on a vertical wall resulting from breaking waves are nu- 
merical simulated. Two dimensional incompressible viscous flow which is governed 
by the Navier-Stokes Equations and the continuity equation is solved by a finite 
difference scheme based on the Volume of Fluid(VOF) concept. Some compar- 
isons with experimental results reveal that the present model is able to simulate 
the impact process with negligible air entrappment not only qualitatively but also 
quantitatively well. Although the impact pressure of a plunging breaker with non- 
negligible air entrapment can not be quantitatively well simulated by this model 
due to the restriction of the incompressible flow, the wave kinematics is still well 
simulated. 

1     Introduction 

Breaking waves represent the major cause for the damage of vertical face breakwaters. 
The stability of such structures is in fact a dynamic problem. The solution of this 
problem requires among others a detailed knowledge of the impact loading; i.e. the 
spatial and temporal distribution of the pressure induced by the breaking waves on 
the structure must be determined. To date, no theoretical approach for this problem is 
available. On the other hand, small-scale model investigations suffer from scale effects, 
so that no definite quantitative conclusions can be drawn. Even results from large-scale 
model tests recently conducted in super-wave tanks seem to be affected to some extent 
by scale effects. In addition, the use of such large facilities is so expensive and so time 
consuming that a reasonable parameter study cannot be effectively performed. There- 
fore, more attention has been paid within the last 15 years to numerical methods. 

Most of the existing numerical model for the simulation of breaking wave impact loads 
are based on potential flow theory. These methods are however unable to describe the 
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whole breaking and impact process due to the great distortion of the flow around the 
free surface interfaces which will not remain irrotational. 

Therefore, the Volume of Fluid(VOF) (Nichols, et al., 1980) concept has been adopted 
here to develop a numerical model which can describe the complex free surface associ- 
ated with breaking waves and the integral history of the impact pressures and forces 
on a vertical wall with a foreshore slope. The present paper is principally intended to 
present some of the results of the Ph.D. work of the first author. It will give a brief 
description of the developed viscous incompressible fluid model, but will particularly 
focus on the discussion of the results, as compared to experimental data and obser- 
vations. Further developments of the model which are planned for the next years are 
finally outlined (air entrainment/ entrapment). 

2     Governing Equations 

A viscous inkompressible 2D-flow is considered and the governing equations are the 
continuity equation: 

? + ? = o (1) 
dx     ay 

and the Navier-Stokes Equations: 

du       du      du _    I dp        (d2u i d2u 

dt       dx       dy        pdx        \ dx J^ + u»Z + vn7,=--»Z + ,/\702 + 7^l+3* (2) 

dv       dv       dv        1 dp        I d2v     d2v\ , , 

m+uTx+vTy = -Wy+vW + W2)+9y (3) 

where: 
p,u are the density and the kinematic viscosity of the fluid, respectively. 
u,v are the velocity components in x and y direction, respectively. 
9x,9y are the x and y components of the gravitational acceleration, 
p is for pressure and t is for time. 

The computational domain and the boundary conditions are shown in Fig. 1. At the free 
surface, the pressure p should be continuous and p is therefore equal to the atmospheric 
pressure pa. At the impermeable vertical wall, the free-slip condition^ = 0) and the 
no-flux condition (u=0) must be fulfilled. 

For the inflow boundary conditions, any wave theory can be used to prescribe the 
surface elevation rj(t) and the velocity components u(t) and v(t). In this study, the 
linear wave theory, the second order solitary wave theory and the cnoidal wave theory 
of Keulegan and Patterson (Wiegel, 1960) are used. On the other hand, in order to 
keep the computational domain as small as possible, the weakly reflecting boundary 
condition (Delft Hydraulics, 1991) will be implemented. This allows the reflected wave 
to flow out the computational domain without inducing undesirable disturbance to the 
incident wave. The following free-slip condition for a slope is derived and considered in 
the model for the impermeable foreshore slope: 
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Figure 1: Computational Domain and Boundary Conditions 

du 

dy 

nx du 

ny dx 
= 0 (4) 

where nx and ny are the components of the normal vector n in x and y direction, 
respectively. 

The governing equations are numerically solved by using a finite difference scheme 
incorporated with the Volume of Fluid (VOF) concept developed by Nichols et al. (1980) 
which deals with the free surface description. In this technique a function F(x,y,t) which 
describes the fractional volume of fluid in the mesh cells is included. The free surface 
can therefore be described according to the value of F in the mesh cells. Besides, the 
kinematic free surface boundary condition can be satisfied approximately by including 
the following transport equation of F: 

dF_     dFu     dFv_ _ 

dt       dx        dy 

Physically, this means that that the F function moves with the flow motion. 

(5) 

3     Computational Results 

Nonbreaking Waves 

First of all, nonbreaking waves are numerically simulated in order to verify that the 
present model is able to simulate correctly nonbreaking waves not only qualitatively but 
also quantitatively. This will then offer a reasonable working platform for simulating 
the more complicated breaking waves. Two cases are considered for achieving this goal, 
namely, solitary wave run up on a vertical wall and the formation of standing waves. 
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Figure 2: Comparison of Experimental and Computed Run-up Heights of Solitary 
Waves at a Vertical Wall 

Solitary Wave Run Up on a Vertical Wall 

Solitary waves propagating on a horizontal bed toward a vertical wall are first taken 
into account in order to verify that the free surface boundary condition is well handled 
in the present model. The second order solitary wave theory of Laitone( 1960) is con- 
sidered for incident waves. Solitary waves with relative wave heights H/d =0.2, 0.3, 0.4 
and 0.5 are considered. H is the wave height and d the water depth. 

The computed results for the relative run up height R/d of solitary waves for dif- 
ferent wave heights are compared with the experimental results from Street and Cam- 
field(1966) A very good agreement between the computational and experimental results 
is shown in Fig. 2. 

Standing Waves 

In order to verify that the weakly reflecting boundary condition is well implemented in 
the present model, incident waves propagating toward a vertical wall with and without 
a foreshore slope are therefore taken into account. Due to the impermeable vertical 
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Figure 3: Numerical Simulated Standing Waves(H=0.4 m, T=4.0 sec, d=2.0 m) 

wall, standing waves are expecting to appear once the implemented weakly reflecting 
boundary condition can successfully let the reflected wave flow out the computational 
domain without inducing any unexpected re-reflection. The wave parameters used for 
this numerical test are: 

• Incident Wave Height H= 0.4 m; Wave Period T= 4.0 sec; Water Depth d= 2.0 

Airy wave theory is used for the incident waves. The wave length can be calculated as 
about 16.2 m. The computational domain is 8.2 m x 2.8 m and consists of anon-uniform 
grid with 40 x 20 cells. The antinode is located at a distance nL/2 (n=0,l,2, • • • ) from 
the vertical wall. Therefore, the second antinode should be located near the other side 
of the computational domain. The numerical simulated standing wave at times t=19.0, 
21.0, 23.0 and 24.0 second are shown in Fig. 3. It is seen that a standing wave with also 
4 second of period appeared. On the other hand, the numerically simulated pressure 
distribution of a standing wave on a vertical wall is compared with the theoretical 
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Figure 4: Pressure Distribution of Standing Wave on a Vertiacl Wall 

results developed by Sainfiou(Horikawa, 1978), and a very good agreement is shown as 
in Fig. 4. 

Breaking Waves 

Four types of breaking waves impacting on a vertical wall are distinguished by Hattori 
et al. (1994): 

• Flip-Through type breaker 

• Impact of an almost vertical breaker front on the wall with a thin air layer 

• Impact of a plunging breaker on the wall with a small air pocket 

• Impact of a plunging breaker on the wall with a large air pocket 

The four breaker types are shown as in Fig. 5 schematically. The term "Flip-Through" 
was first introduced by Cooker and Peregrine (1990). This kind of impact process con- 
tains either very few or no entrapped air and the impact pressure originates from the 
large flow acceleration due to the concentration of flow adjacent to the vertical wall. 
The impact process from (b) to (d) indicates an increasing air content. 

These four types of breaking waves and the resulting pressure distribution on the ver- 
tical wall are numerically simulated. The experiments by Takahashi et al.(1983) are 
considered for comparison, since pictures of breaking processes at different stages were 
recorded which can be well compared with the numerical simulated breaking processes. 
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Figure 5: Schematized Breaker Types Simulated by the Numerical Model 

Besides, different breaking wave impact can be systematically obtained in these exper- 
iments by simply changing the berm length in front of the vertical wall. 

The wave parameters of the series of experiments which are also used for numerical 
simulation are 

• Wave height H in front of the berm = 0.351 m 

• Wave period T = 3 sec 

• Water depth d = 0.8 m 

The berm lengths considered in the numerical simulation are B= 0.25 m, 0.50 m, 0.75 
m and 1.25 m, respectively. The berm height is 0.5 m and the slope is 1:10. The compu- 
tational domain is 7.0 m xl.5 m and consists of a nonuniform grid with 150x40 cells. 
The smallest cell width is 0.02 m and is located on the wall side and the smallest cell 
height is 0.02 m and is located on the mean water level. 

The wave theory to be used in the numerical simulation corresponding to the wave pa- 
rameters is the cnoidal wave theory. Among various existing mathematical description 
of cnoidal wave theories, the theory developed by Keulegan and Patterson (1940) is fi- 
nally taken as the most appropriate, as recommended by Le Mehaute et al. (1968). The 
detailed mathematical description of the related components like the surface elevation 
r), the velocity components u and v etc. can be found in Wiegel(1960). 

The first case to be considered is the "flip-through" type of breaking waves. The pho- 
tographs recorded by Takahashi et al. (1983) refer to Photo 1(2) of the original paper. 
The numerical simulated breaking processes of flip-through with both of the free surface 
profile and velocity vector field are shown as in Fig. 6. Only a part of the computa- 
tional domain is presented in this figure, x coordinate ranges from 3.5 m to 7.0 m and 
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Figure 6: Computed Wave Profiles and Velocity Fields for the Flip-Through Breaker 
Type 

the y coordinate ranges from 0.4 m to 1.5 m. After the comparison is made with the 
photographs taken by Takahashi et al. (1983), it is found that the numerical simulated 
flip through impact process agree qualitatively with the experiment. 

The time history of the numerical simulated impact pressure is given in Fig. 7. The 
numerical simulated results agree not only qualitatively but also quantitatively well 
with the experimental results refer to Takahashi et al.(1983). The time history of the 
total force obtained by integrating the pressure distribution is shown as in Fig. 8. The 
characters A, B, C and D in Fig. 7 and 8 correspond to the A, B, C and D of the break- 
ing wave processes shown in Fig. 6. It is worthwhile to mention that the point C in Fig. 
8 which is the trough of the force history corresponds to the maximum run-up height 
of the impact process shown in Fig. 6. This phenomenon has already been pointed 
out experimentally by Mitsuyasu (1962) which also support the numerical simulated 
results. 

For the other three breaker types, the numerically simulated free surface evolution of 
the other three breaking processes still agree qualitatively well with the photographs 
of the experiments. Fig. 9 is the numerical simulated breaking processes of the impact 
process-almost vertical breaker front with a thin air layer. The photographs of this 
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Figure 7: Computed Time History of Flip-Through Type Impact Pressure 

impact process refer to Photo 1(3) of Takahashi et al. (1983). However, because the 
damping effect of the entrapped air can not yet be studied using the present model for 
incompressible flow, the resulting impact pressures of these three breaker types appear 
to be much larger than the experimental results and are not presented here. On the 
other hand, it is also found that the numerically simulated peak pressure can still be 
adjusted to the same order of magnitude with the experimental results once the impact 
velocity and breaker profiles obtained from the numerical simulation are used as the 
input data of Bagnold's formula which accounts for the damping effect of entrapped air. 
Fig. 10 are the numerical simulated free surface evolution of the plunging breaker type 
with small amount of air entrappment. The photographs of this impact process refer 
to the Photo 1(4) of Takahashi et al. (1983). Fig. 11 are the numerical simulated free 
surface evolution of the plunging breaker type with larger amount of air entrapment. 
The photographs of this impact process refer to Photo 1(5) of Takahashi et al. (1983). 
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On the other hand, in order to gain more insight of the computed wave kinemat- 
ics of breaking waves, a comparison is made of the velocity distributions under wave 
crest around the breaking point. Besides, it is very difficult to define the exact break- 
ing point during the breaking process since the free surface and velocity distribution 
rapidly change. It is therefore necessary to perform the comparison of experimental 
and numerical results under the consideration of both free surface and velocity distri- 
bution. However, this kind of measurement is rare due to the difficulty of getting an 
accurate velocity measurement and surface profile simultaneously. The experiment run 
by Iversen(1952) is still one of the most well known experiments which have considered 
both the surface profile and the velocity distribution. Fig. 12 shows the surface profile 
around the breaking point with the simultaneously observed velocity distribution. Fig. 
13 shows the computed free surface around the breaking point and agrees also qualita- 
tively well with Fig. 12. The quantitative comparison of the velocity distribution under 
a wave crest around breaking point is given in Fig. 14, also showing a good agreement. 
The X-coordinate represent the dimensionless velocity which is normalized by y/grjb, % 
is the water depth under the wave crest. The Y-coordinate represent the relative depth 
y/Vb, Y=1.0 indicates the wave crest, Y=0 is on the bottom under the wave crest. 

4    Discussion 

The comparative analysis of the results of the computations may be summarized as 

follows: 

• The basic tests of simulating non-breaking waves phenomena like the run up 
height of solitary waves on a vertical wall and the formation of standing waves 
have already proven that the present numerical model is able to correctly handling 
nonlinear waves and the weakly reflecting boundary. 

• For flip-through breaker type (negligible air entrapment), the numerical results 
are qualitatively and quantitatively reliable with respect to the description of the 
breaker kinematics and to the subsequent impact loading on the vertical wall. 
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Figure 9: Computed Wave Profiles and Velocity Fields of Breaker Type- Almost Vertical 
Breaker Front with a Thin Air Layer 

For the last three breaker types with air entrapment in Fig. 5, the wave kinematics 
of the breakers is well simulated. However, the computed impact loading is much 
higher than the loading obtained from experiment. This result was expected since 
the numerical model cannot yet account for air entrapment (incompressible flow). 
However, by using the impact velocities and breaker profiles obtained from the 
numerical computation as input data into Bagnold's formula (Bagnold, 1939) 
which accounts for the damping effect of entrapped air, reasonable results are 
obtained for the magnitude of the peak impact loading. 

The last comparison is performed between the numerical simulation and the ex- 
periment done by Iversen(1952) for the velocity distribution under the wave crest 
around the breaking point; a quantitatively good agreement is also achieved. 
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5     Concluding Remarks 

The application of the VOF concept for the numerical solution of the governing equa- 
tions and the development of further numerical schemes for the treatment of the bound- 
ary conditions have led to a powerful tool for the simulation of breaking and nonbreaking 
wave kinematics at and on a vertical structure with various foreshore geometries. The 
complete impact pressure and the resulting loading (impact) are also well simulated as 
far as the entrapped air is negligible. Corrective coefficients for the magnitude of the 
impact loading for the cases where air is entrapped in the breaker can be obtained from 
Bagnold's formula in which the impact velocity and the breaker profile during impact 
obtained from the numerical model are used as input data. 

Further development of the model is directed towards accounting for the compressibil- 
ity of air in order to obtain directly the proper magnitude of the impact loading in the 
case of plunging breakers with entrapped air. 
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from Experiments by Iversen(1953) 
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