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Abstract 

A numerical method has been developed for the analysis of ship motions in a 

harbor with arbitrary bathymetry. A BEM-based 3-D model, applied partially 
to a near-field surrounding a ship, is combined with a FEM-based 2-D model, 

utilized in the remainder of harbor domain. This combination may achieve 

an efficient computation of the ship motions with taking into account of wave 

deformation in a harbor. Preliminary examinations have been performed to in- 

vestigate appropriate location of a matching boundary where these two models 

are coupled. It is found that, for reliable prediction, (2 ~ 3)ft (h: water depth) 

is required for the distance between the matching boundary and a body. The 

numerical results of added mass and damping coefficients for a rectangular float- 

ing body in a rectangular basin are then compared with those obtained from a 
conventional numerical model. Favorable agreement between the results verifies 

the present numerical method. Ship motions in a harbor with slowly varying 
depth are also demonstrated. 
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1. Introduction 

Precise prediction of ship motions in a harbor is essential to reliable harbor 

design. Coastal structures such as breakwaters and bottom topography in a har- 

bor cause incoming waves to be diffracted and refracted before their reaching a 

floating body. In addition to such deformation of incoming waves, diffracted and 

radiated waves propagating from the body may be re-reflected by breakwaters 

and come back to the body again. Therefore, in general, hydrodynamic forces 

acting on a floating body in a harbor significantly differ from those in the case 
of open sea. 

Under such circumstances, it may be necessary that the wave-ship interaction 
problem is solved simultaneously with the wave deformation in a harbor. In spite 

of this, corresponding numerical models, taking into account of coastal structures 

and bottom topography, have rarely been provided for predicting ship motions 

in a harbor. Oortmerssen (1976) developed a numerical method to calculate 

wave-induced motions of a ship moored at a straight quay, whereas Sawaragi 

and Kubo (1982) applied a two-dimensional boundary element method (2-D 

BEM) to the case of a rectangular floating body in a rectangular harbor. These 

basic studies may indicate essential influences of harbor boundaries on the ship 

motions. However, since these approaches have utilized the principle of mirror 

image, their applications are limited to harbors with straight boundaries. 

In the light of this, Sawaragi et al. (1989) proposed a numerical method 

applicable to harbors of an arbitrary horizontal configuration. In their approach, 

a 3-D BEM model using a Green's function derived by John (1950) is applied 

only to the near-field around a floating body, and is combined with a 2-D BEM 
model utilized in the remainder of harbor domain. Although the basic idea of 

this "partially three-dimensional model" may address more practical situations 

as compared to the aforementioned methods, its application is still restricted to 

the case of constant depth in a harbor. 

In this connection, the present study attempts to develop an alternative 

"partially three-dimensional model" for more general situations with a slowly 

varying bottom. A finite element method (FEM) based on the mild-slope equa- 

tion (Berkhoff, 1972) is employed as a 2-D model in a harbor domain excluding 
the near-field around a floating body. Taking into account of continuities of fluid 

mass and momentum, this 2-D FEM model is coupled with a 3-D BEM model 
in the vicinity of the body. 

The basic theory and the numerical formulation are described in Section 

2, where the 3-D BEM and 2-D FEM models are solved simultaneously with 

continuity conditions imposed on a matching boundary. Since the 2-D model is 
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based on the mild-slope equation, this model is applicable only to the domain 

where evanescent modes are negligible. In this connection, Section 3 investigates 

an appropriate location of the matching boundary in a vertical two-dimensional 

plane. In Section 4, in order to verify the present numerical model, comparisons 

are made with a conventional model (Sawaragi and Kubo, 1982) for radiation- 

force coefficients of a rectangular floating body in a rectangular basin. Lastly, 
a numerical example is given in Section 5 for ship motions in a harbor with an 
inclined bottom. 

2. Partially Three-dimensional Numerical Model 

Governing equation and boundary conditions 

Let us consider wave diffraction and radiation by a floating body in a harbor 
with arbitrary bathymetry. Assuming an irrotational small-amplitude motion of 

an incompressible and inviscid fluid, the fluid motion can be expressed by using 

the linear potential theory. The velocity potential for the wave-body interac- 

tion may be separated into the propagation mode and the evanescent modes, 

where the latter diminishes exponentially with distance away from the body. 

Therefore, in the present model, the harbor domain considered is subdivided 

into two regions, fit and fi2, 
as shown in Fig. 1. The former region fij de- 

notes a small near-field around the floating body where the evanescent modes 

are significant, whereas the latter fi2 represents a whole domain in a harbor 
excluding fii. It is assumed that the matching boundary, Sc, between fij and 

fi2 is located sufficiently apart from the body and, hence, only the propagation 

mode is predominant in il2. 

The velocity potential, $ (x, y, z, t) can be expressed by the combination of 

incident, diffraction and radiation potentials: 

$(*, y, z, t) = <h{x, y, z)e~M + £ ^(D,e-'ff%(*, y, z), (1) 
i=i at 

where (x, y, z) represents Cartesian coordinates (see Fig. 1), t is the time, a 

is the angular frequency of incident waves, / = 1, 2, • • •, 6 correspond to the 

surge, sway, heave, roll, pitch and yaw body motions, respectively, <j>7 is the sum 

of incident and diffraction potentials, and fa and D\ (I = I ~ 6) are the radiation 

potential and the complex amplitude of the Z-th directional body motion. 
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.Wave 

Fig.   1 Schematic diagram of partially three-dimensional 

model. 

The governing equation and the boundary conditions for <j>t {I = 1 ~ 7) are 

-K-^T + -^rr + -7TT- = °.     (/ = 1 ~ 7; in fij [i = 1J and S22 [i = 2J),     (2) 
3a:2 ay' 

AW 

9. 

A« 

AW 0,    (/ = 1 ~ 7, i = 1, 2; on £», 

3rc 
0,    (Z=l~7, * = 1, 2; onSB), 

A(D 

9: 
— = v(,    (/ = 1 ~ 7, on Sv), 

(3) 

(4) 

(5) 
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Vi = nx, v2 = ny, v3 — nz, 
V

A = (y ~ Va)nz - 0 - zG\ yi 

(6) u5 = (z - zG)nx - (x - xG)nz, 

v(i = (x - xG)nv - (y - yG)nx 

«7 = 0, 

where <f>\ and <j>\ ' denote the velocity potentials in ftj and fi2; respectively, SF 

is the free surface, SB is the seabed, Sv is the submerged body surface, n is the 

outward normal on each surface, (n„ n„, nz) are the x—, y— and z—components 

of the outward unit normal on Sv, and (xG, yG, zG) is the gravitational center 

of the body. 

On the other hand, partial wave reflection is considered along the harbor 

boundary Cw- Although Isaacson and Qu (1990) proposed a corresponding 

boundary condition including the effects of wave direction and phase shift, the 

present study utilizes the following simple condition: 

d^i2       icrl- KRW J2)      n     •,      7   nn r   x ,7) 

On        6 1 + KRW 

where C is the wave celerity and KRW represents the reflection coefficient im- 

posed. 

3-D BEM model in nt 

Applying Green's theorem to the fluid domain Oi, the Laplace's equation 
Eq. (2) is transformed into the following integral equation: 

«(P)tf'(mX{tff-f^ = 0,    (/-l-T), (8) 
where S represents the closed boundary surface containing f21; P denotes an 

arbitrary position in Oi, and G is a Green's function. The coefficient a(P) is 

2-K if P is on S, and is iir in other cases. 

Using a Green's function derived by John (1950) and substituting the bound- 

ary conditions, Eqs. (3), (4) and (5), into Eq. (8), the following boundary 

integral equations can be obtained: 

°TOiV)+/    U)d^~djf-G)ds+f ^T-ds-l   vlGds, JSc I on        On       I JsyuSg on Jsv 

(Z = 1 ~ 7). (9) 

If the water depth is constant in fii, the integral on SB involved in Eq. (9) can 

be eliminated since dG/dn — 0 (on SB)- 
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2-D FEM model in fl2 

In fl2, sufficiently far from the body, we may consider only the propagation 

mode in the fluid motion over a slowly varying seabed. This allows us to Utilize 

the mild-slope equation (Berkhoff, 1972; Smith and Sprinks, 1975; Lozano and 

Meyer, 1976). 

Thus, the velocity potential <f>i in fi2 is approximated by the form 

where k(x, y) and h{x, y) are the wave number and the water depth, respectively. 
The corresponding mild-slope equation, derived from Eq. (2), is given as 

V- (CCaV<p\2)) + k2CCa<f\2} = 0,     {I = 1 ~ 7, in f)2), (11) 

where V = (d/dx, d/dy) and C& is the group velocity. 

According to Chen and Mei (1975), a variational approach is employed in a 

FEM-based formulation to solve Eq. (11). Along the open boundary, denoted 

by CQO 
m Fig- 1> the finite elements are coupled to the superelement which 

satisfies the radiation condition analytically. The exterior region outside C<x, is 

assumed to have a constant water depth. 

The variational function for the governing equation [Eq. (11)], the boundary 

condition on Cw [Eq. (7)] and the radiation condition is given as 

J, = (Ji)j + {Ji)i + (J3)i + Wi,    (/ = 1 ~ 7), (12) 

Wi = LCCa{(^-^)+l5i7^)^-l6i7^-^^}dc 

(13) 

where Sij is the Kronecker's delta, <p0 is the velocity potential of incident waves, 

Cc is the intersection of the free surface and the matching boundary Sc, and ^pj 

denotes the exterior analytical solution (Chen and Mei, 1975). 
Discretizing Eq.   (12) by using linear triangular elements and applying the 

variational principle, we finally obtain a set of simultaneous equations for y>) 

in 0,2 including Cc and d<p\  Jdn on Cc- 
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Continuity conditions on the matching boundary 

The velocity potential, 4n, and its normal derivative, d<f>t/dn, must be con 

tinuous across the matching boundary Sc' 

*W 
tf\ (I = 1 ~ 7, on Sc (14) 

Since the magnitude of evanescent modes is assumed negligible on Sc, these 

equations are rewritten by 

,(i) _    (2) cosh k(h + z) 
cosh kh 

d(f>i dfi    cosh k(h + z)        (2) d   /cosh &(/i + z) 

dn dn        cosh fc/i dn \      cosh fc/i 

Substituting Eq. (15) into Eq. (9), we obtain 

9n JCn   I 
dc + 

/, 

. (Z = 1 ~ 7, on Sc). 

(15) 

SVUSB dr 
• ds, 

= f   v,Gds    {1 = 1 ~7), 

where 

IA = 
f° cosh k(h + z)dG 

Ic = 

-I. 
[     , 

•l-h dn \     cosh kh 

f° cosh k(h + z) 

J-h 

-h      cosh kh      dn 
0   d   (cosh k(h + z 

h dn\ 
Uh.4- z) 

Gdz. 

dz, 

Gdz 

(16) 

(17) 

cosh kh 

Equation (16) is discretized into a finite number of facets on Sy and SB, and 

of line elements on Cc- In the resultant discretized equation, the position of the 

control point P is set at the center of each element on Sv, SB and Cc- This 

leads to (Ny + Ng + Nc) linear algebraic equations involving <p\ (on Sy, SB), 

ifi (on Cc) and df\ '/dn (on Cc) as unknown variables, where Ny, NB and 

Nc are the number of elements on Sv, SB and Cc, respectively. These equations 
are solved simultaneously with those obtained from the 2-D FEM model so as 
to determine the velocity potential in the both domains. 
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3. Location of the matching boundary 

Prior to computing ship motions in a harbor, preliminary examinations are 

conducted to investigate the effect of the location of the matching boundary. As 

described in the previous section, the matching boundary must be set far enough 

away from the body so as to satisfy the assumption of negligible magnitude of 
evanescent modes. 

For this examination, we consider a wave-diffraction problem in a vertical 

plane. In general, the horizontal variation of the magnitude of evanescent modes 

may be represented by 

Ame-kmX,(m = l,2, •••), 

where X denotes the horizontal distance from the origin of wave scattering, km is 

the m-th eigen value (km tan kmh = —a2/g), and Am is a constant corresponding 
to the magnitude of the m-th mode at X = 0. Since e~klX > e~k2X > • • • 

(ki < k2 < • • •), we may examine only the first mode, A\t~klX. The magnitude 
ratio of the first mode, normalized by Ai, is then defined as 

p{X) = e~klX. (18) 

As an example, Fig. 2 shows the computed reflection coefficient of a sub- 

merged rectangular shelf, KR, for different values of p. In the figure, the abscissa 

denotes the normalized wave frequency, the solid line is the corresponding ana- 

lytical solution obtained from an eigen-function expansion method, and SR and 

ST are the matching boundaries. The combination of a 1-D FEM model with a 

2-D BEM model was employed for these computations. 

As seen in the result for p = 0.1, a large value of p (small X) causes an 

apparent deviation from the analytical solution. In this case, the magnitude of 

evanescent modes may be still significant at the matching boundaries. While a 

slight discrepancy is observed for p = 0.05, the numerical results for p = 0.01 

and 0.005 agree well with the linear theory in the entire frequency range ex- 
amined, indicating that the assumption of negligible evanescent modes becomes 

appropriate. 

In Fig. 3, the normalized distance, X/h0 (hQ: the water depth), is plotted 

for different values of p. It is found that X/h0 corresponding to a constant p 

is insensitive to the wave frequency. The results shown in Figs. 2 and 3 may 

conclude that the distance X, required for reliable prediction, is 2 ~ 3 times as 

long as the water depth. 
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Fig. 2 Variation in computed reflection coefficients of 

a submerged rectangular shelf, with the location 

of matching boundaries. 
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Fig.   3 Relation between the normalized distance X/h0 and the 

parameter p. 
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For 3-D cases, the distribution of evanescent modes in a horizontal plane 
may be expressed as 

BnmKn(kmR) cos n8,   (n = 0, !,-••, m = 1,2, •••), 

where (R, 6) is local polar coordinates, Bnm is a constant and Kn is the modified 

Bessel function of the n—th order. Although the examinations were performed 

only in a vertical 2-D domain, the results obtained here may also be valid for 
3-D cases since Kn(kmR) can be represented by using an exponential function 
e-kmR £or iarge JI 

4. Comparison with a conventional numerical model 

Sawaragi and Kubo (1982) computed hydrodynamic forces on a rectangular 

floating body in a rectangular basin by using a 2-D BEM model. Although the 

application of their model is limited to a rectangular harbor with a constant 

depth, the comparison with their results may confirm the validity of the present 

numerical model. 

The numerical results for added mass and damping coefficients in the sway 

motion, M22 and N22, are given in Fig. 4, where A and Ls are the weight and 

the length of the floating body. In the figure, the configurations of the basin 

and the floating body are also illustrated in a horizontal plane. The body's 

submergence and the water depth are 0.2m and 0.5m, respectively, and the 

harbor boundaries are fully reflective (KRW = 1). 
As shown in this figure, predominant peaks of the hydrodynamic forces 

emerge at certain frequencies corresponding to harbor resonance. This peak 

phenomenon may suggest an importance of surrounding-boundary effects in pre- 

dicting ship motions in a harbor. A favorable agreement between the results 

obtained from the present model and those from the 2-D BEM model (Sawaragi 

and Kubo, 1982) indicates the reliability of the present numerical model. 
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Fig. 4 Added-mass and damping coefficients in sway motion of a 

rectangular floating body in a rectangular basin. 

5. Numerical Example 

In addition to the influence of harbor boundaries, seabed topography may be 

one of the important factors for precise prediction of ship motions in a harbor. 

However, as mentioned in Introduction, most conventional approaches applied to 

this problem have assumed a constant water depth in a harbor. In this section, 

therefore, a numerical example is given for the case of a harbor with an inclined 
bottom. 
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The configurations of a floating body and a harbor examined are illustrated 
in Fig. 5. For reference, computations were also conducted for a flat-bottom 

case, for which the water depth is denoted by a broken line in this figure. The 

propagation direction of the incident waves is 30 degrees oblique to the harbor 
mouth. 

Incident Wave 

g Ls=1.0m 

T 
3.0m 

Fig. 5 Configurations of a floating body 

and a harbor examined. 

The resultant frequency responses of ship motions are shown in Fig. 6, where 

the solid and dotted lines represent the numerical results for the flat bottom and 

the inclined bottom, respectively, and H0 is the incident wave height. Although 

resonant peaks emerge in the both numerical results, the corresponding peak fre- 

quencies are different between the cases. In particular, the computed responses 

for the inclined-bottom case shows distinctive peaks at ff2Ls/g = 1.8, which are 

not observed in the result for the flat-bottom case. This difference is attributed 

primarily to the variation in natural frequencies of the harbor. The results given 
in Fig. 6, therefore, may indicate an importance of a depth-variation effect on 

the ship motions in a harbor. 
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(f)   Yaw 

Fig. 6 Frequency responses of the ship motions for the flat-bottom 

case ( ) and the inclined-bottom case ( ). 
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6. Conclusions 

A numerical method, composed of a BEM-based 3-D model and a FEM- 

based 2-D model, has been developed for the analysis of ship motions in a harbor 

with arbitrary bathymetry. This combination of the two different models may 
achieve efficient computation with taking into account of wave deformation in a 

harbor. Since the mild-slope equation is employed in a horizontal 2-D domain in 

a harbor, the present method can be applied to more general cases with varying 

water depth as compared to a conventional "partially 3-D model" (Sawaragi et 

al., 1989). 

Basic examinations have been performed to investigate appropriate location 
of a matching boundary where the two models are coupled. The results show 

that, for reliable prediction, the distance between the matching boundary and a 

body is required to be 2 ~ 3 times as long as the water depth. This practically 

satisfies a basic assumption that the magnitude of evanescent modes is negligible 

at the matching boundary. 

The numerical results of radiation-force coefficients for a rectangular floating 

body in a rectangular basin are then compared with those obtained from a 

conventional method (Sawaragi and Kubo, f 982). Favorable agreement between 

the results verifies the present numerical method. 

Lastly, ship motions in a harbor with an inclined bottom are demonstrated. 

The comparison between the numerical results for the flat-bottom and inclined- 

bottom cases indicates that the bottom topography may cause a variation in 

natural frequencies of harbor, which significantly influence the resultant ship 

motions. 
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