
CHAPTER 47 

Bragg Scattering of Waves over Porous Rippled Bed 

Hajime Mase1 and Ken Takeba2 

ABSTRACT: A time-dependent and a time-independent wave equations 
are developed for waves propagating over porous rippled beds taking 
account of the effects of porous medium. The mean water depth and the 
thickness of porous layer are assumed to be slowly varying compared to 
the wavelength of surface gravity waves, and the spatial scale of ripples is 
assumed to be the same as the wavelength of surface waves. By using the 
time-independent equation, the Bragg scattering is examined in one- 
dimensional case. The results show that the reflected and transmitted 
waves become smaller than those in the case of impermeable rigid rippled 
bed due to energy dissipation in porous medium. 

Introduction 

Davies and Heathershaw (1984) studied the reflection from sinusoidal 
undulation over a horizontal bottom and derived a solution of reflection 
coefficient. Their experimental results showed a resonant Bragg 
reflection at the condition where the wavelength of the bottom 
undulation is one half the wavelength of the surface wave as predicted 
by their theory. Mei (1985) and Naciri and Mei (1988) developed 
theories of wave evolution at and close to the resonant condition by 
shore-parallel sinusoidal bars and two-dimensional doubly sinusoidal 
undulations over a slowly varying topography. For more realistic 
natural topography, Kirby (1986) derived a general wave equation 
which extends the mild slope equation of Berkhoff (1972). These 
existing theories don't take account of the effects of seabed 
permeability. 
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The strong reflection of incident waves due to the Bragg reflection 
results in rough offshore sea. Since it is desirable to reduce the 
transmitted and reflected waves, artificial porous ripples or bars would 
be more convenient. 

In this study, a time-dependent wave equation is developed, by 
extending the theory of Kirby (1986), for waves propagating over 
permeable rippled beds in order to take into account the effects of 
porous medium. Some numerical calculations are carried out to show 
the effects of seabed permeability on wave transformations or on the 
Bragg scattering by ripples in one-dimensional case. 

Derivation of Wave Equation over Porous Rippled Bed 

The coordinate system and main quantities are shown in Fig.l. The 
actual depth, h'(x), is divided into the rapidly varying small amplitude 
undulation, 8(x), and the slowly varying mean water depth, h(x): 

h'(x)=h(x)-8(x) (1) 

where x = (x,y). Thickness of the porous layer, h's{x), is expressed as 

h's(x) = hs(x) + S(x) (2) 

Fig.l Definition of variables 
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where hs(x) is the slowly varying mean thickness. The bottom beneath 
the porous layer is assumed to be impermeable and rigid. 

The horizontal scales of changes of h(x), hs(x) and 5(x) are 

O 
kh 

= 0(kS)«1 

and 

O 

O 

kh 
~0(k5)«l 

kd 
-0(1) 

(3) 

(4) 

(5) 

where \ is the gradient operator as (dldx.dldy), and k is the wave- 
number. 

The analytical domain is divided into two regions: the region (I) is 
the fluid domain above the porous layer; the region (II) is the porous 
layer, as shown in Fig.l. 

In the region (I), the irrotational motion of incompressive and 
inviscid fluid is described by a velocity potential, (f>, as follows: 

<t>tt+g<t>z =°; z=o 

<pz = -Vhh-Vh$ + Vh-{5Vh4>) + w(l) ;   z = -h 

(6) 

(7) 

(8) 

Eq.(6) is the Laplace equation, Eq.(7) is the free surface boundary 
condition combined dynamic and kinematic boundary conditions, and 
Eq.(8) is the bottom boundary condition expanded about z = -h to the 
order of 0(kS), where / is the time, g is the acceleration of the gravity, 
and w(I) is the discharge velocity at the interface between the region (I) 
and (II). The pressure, p(1), is given by 

?(I) =-p((j)t+gz) ;  -h<z<0 (9) 

where p is the density of the fluid. 
In the region (II), after Sollit and Cross (1972) and Madsen (1974), 

the unsteady motion of the fluid in the porous medium is described by a 
continuity equation 
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V«=0 (10) 

and by a momentum equation 

% du ^ 

P n at        p    \ I        n 

where M is the discharge velocity vector, V is the gradient operator 
vector as (dldx, dldy, dldz), n is the porosity, Tis the inertia coefficient, 
/ is the linearized friction factor, pm is the pressure, co is the angular 
frequency. Assuming the irrotational motion of the fluid and 
introducing a discharge velocity potential, <p, we can rewrite Eqs.(10) 
and (11) as 

Vh9 + 9a=° ;   ~{h + hs)<z<-h (12) 

pW^-pf-Vt+gz + f-tp) ;   -{h+hs)<z<-h (13) 
yn n   J 

The boundary condition at the upper face of the porous layer is 

(pz=-Vhh-Vh(p + Vh -(SV^ + w^   ;    z=-h (14) 

and the boundary condition at the bottom of the porous layer is 

(pz=-Vh(h + hs)-Vhq>   ;    z = -(h + hs) (15) 

where w(II) is the vertical discharge velocity at the interface between the 
region (I) and (II). 

At the interface, the pressure and the vertical discharge velocity 
should be continuous: 

p(i)=p(n)   ;    z = -h (16) 

w(i) = w(n)   .    z = _h (17) 

The solutions of velocity potentials, (j) and (p, may be expressed as 

<t>{x,z,t) = f   (x,z) ^(jc,f)+(non- propagating modes) (18) 

q>(x,z,t) = f    (x,z) q)(x,t) + (aon- propagating modes)       (19) 
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Under the condition of horizontal bottom (\ h = \ hs = 0), we can obtain 
the vertical distribution functions of /(I) and /(1I) as follows: 

pl' = — {cosh khs coshk(h + z)+y sinh khs sinh k(h + z)} (20) 

/") = — ycoshk(h + hs +z) (.21) 

where 

D = cosh khs cosh.kh (l + 7 tanhkhs tanhkh) (22) 

y = n/(T+if) (23) 

The dispersion relation is given by 

2 _      tanhkh + ytanhkhs 

1 + 7 tanh kh tanh khs 

For the case of mild slope bottom, the velocity potentials could be 
described by Eqs.(18) and (19) with Eqs.(20) and (21). Substituting 
Eqs.(18) and (19) into the matching condition of pressure yields 

0=<P (25) 

Following Smith and Sprinks (1975) and Kirby (1986),  we employ 
Green's second identity to the propagating component of (p and fm: 

0{l\^z-\\^dz = [f%z-^
0 
-h 

Integrating the above equation yields 

l2  .        rO   .1r _m2 Vh-\°_hVh^
Zdz-\lkHf^dz 

-v,-(5v^)/(I)2 

- w(I)/(I) |_ + h{l)f? I + high °rder terms 

-if*,/"2] --Uf")2 
-h 

(27) 

Green's second identity to the propagating component of <p and /(II) is 
described by 
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(28) 
and the integration yields 

-v-.LM,,vt*/<»'2*-LtJj)*
2w<")* 

=vt.(ws*)/'"2  W'V'I 
\-h "• 

— 0/    /z + high order terms (29) 

Eliminating w(I) and wm (actually wm=wm) from Eqs.(27) and (29) 
and using <p = <p,we obtain 

2 

^ (<ft„ + (02$) - Vh • (aWj) -k2a$+ cosh   ^ (i _ y)V/t (s V/^) = 0 

(30) 
where 

a = p + qly (31) 

p = J° f{1)2dz = —i-j {cosh 2 ^ sinh 2kh(\ + 2kh I sinh 2kh) 

+ y sinh 2khs(cos\\ 2kh- l) + y2 sinh2 khs smh2kh 

x(l-2M/sinh2^)} (32) 

9=nA+A ^/(II) dz= 2"{72sinh2%sinh2A:ft(l+2%/sinh2^)} 

(33) 

Eq.(30) is the time-dependent wave equation.   Factoring the time out 
of 0 as 

$=^e~im (34) 

we can transform Eq.(30) into 

V, •(«Vft0) + afc20-C°yj(l-y)VA •(«5V/!0) = O (35) 
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The effects of the porous medium are taken into account through the 
complex wavenumber k given by Eq.(24) and the complex coefficients 
of a and y. 

Relation to Existing Theories 

Case ofhs = 0 and 5 = 0 

In the case that there are not porous layer and rapid undulation, 
Eq.(35) reduces to the mild slope equations derived by Berkhoff 
(1972): 

Vh • (cCgVh <j>) + k2CCg<p = 0 (36) 

Case ofhs = 0 and 5*0 

In the case that there is not porous layer and there exists rapid 
undulation, Eq.(35) reduces to the general wave equation over rippled 
bed derived by Kirby (1986): 

V* • (cCgVh$) + k2CCg$ - CQS^2 ^ Vh -(5V^) = 0 (37) 

Case of very small permeability of porous layer 

The case of very small permeability is treated as a mathematical limit 
of very small porosity (« -> 0) and very large friction factor (/ -> °°). 
In this condition, Eq.(35) reduces to the general wave equation 
expressed as Eq.(37). 

Case of very large permeability of porous layer 

Since ft—>1 and /—>0, so 7—>1. The resultant wave equation 
becomes the same as the mild slope equation expressed as Eq.(36) 
where the phase velocity C and the group velocity Cg are defined by 
using the water depth of h+hs. 
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Numerical Calculations of Bragg Scattering 

Boundary condition 

At the seaward boundary condition, the following condition has to be 
satisfied: 

4 = -*!(<£-20/) (38) 

where 0/ is the incident wave potential amplitude. At the downstream 
boundary condition, the following transmitted condition was needed: 

k = ikij> (39) 

Numerical conditions 

Numerical conditions followed the experimental ones of Davies and 
Heathershaw (1984). The water depth h and the thickness of porous 
layer hs were constant, and the undulation 8 was given by 

8 = Dsm{?uc);   0<x<ml (40) 

where m, X, I, and D are the number, the wavenumber, the wavelength 
and the amplitude of the ripples, respectively. Two cases of Case 1 (m 
= 10 and D/h = 0.l6) and Case 2 (m=4 and D/h = 0.32) were employed. 
Actual values of D, I and hs in the experiments of Davies and 
Heathershaw (1984) were 5 cm, 1.0 m and 0 m, respectively. Here we 
changed hs from 0 m to 0.2 m to examine the effects of permeability on 
the Bragg scattering. 

Calculated results and discussion 

Figure 2 shows the spatial distributions of wave amplitudes of wave 
period 1.0 s and 1.3 s, where the solid line corresponds to the case of 
impermeable rigid bottom, the dotted and the dash-dotted lines 
correspond to the case of porous bottom of /= 1 and /= 10, 
respectively, with T = 1.0, n= 0.4 and hs = 0.2 m of Case 1. In Fig.2 
(a), the reflection coefficient is less than 0.1; and, in Fig.2(b), the 
Bragg reflection condition is nearly satisfied, and the variations of the 
amplitudes are remarkable. It is seen from Fig.2 that when the bottom 
is permeable, the amplitudes and their variations become small. 
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Fig.2 Spatial distributions of wave amplitudes: 
(a) non-resonant condition; (b) resonant condition 

Figure 3 shows the reflection coefficient, R, and the transmission 
coefficient, T, against the ratio of wavenumbers, 2k/X, where the k is 
taken as the real part for the case of permeable ripples. In the figures, 
the linearized friction factor was changed by 10, 5, and 1, keeping 
T= 1.0, n=0.4 and hs = 0.2 m. The calculated results for 
impermeable rigid bottom, shown by the solid lines, were obtained by 
setting n = 0. In the range of 1 < f< 10, the reflection and transmission 
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Fig.3 Reflection and transmission coefficients: (a) Case 1; (b) Case 2 
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Fig.3 (Continued) 
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Fig.4 Effect of thickness of porous layer 
on reflection and transmission 
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Fig.5 Effect of inertia coefficient of porous layer 
on reflection and transmission 
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coefficients become small with decrease in the linearized friction factor. 
The effect of thickness of the porous layer on the Bragg scattering is 

shown in Fig.4, by changing hs, with x — 1.0, n = 0.4 and/ = 10. The 
reflection and transmission coefficients become small with increase in 
the porous layer thickness, as easily expected. 

Figure 5 shows the effect of the inertia coefficient by changing x, 
with/ = 10, n = 0.4 and hs = 0.2 m. It is seen from this figure that 
there is little effect of x. 

It should be noted that though the parameters of n, /, and x were 
changed independently for the convenience in the calculations so far, 
these parameters are dependent each other. The determination of the 
parameters is difficult for arbitrary porous medium. 

Conclusions 

In order to deal with wave transformations over a permeable seabed 
with rapidly varying undulations, we developed the time-dependent and 
time-independent wave equations taking account of the effects of porous 
medium. 

In the case that there are not porous layer and rapid undulation, the 
time-independent equation reduces to the mild slope equation derived 
by Berkhoff (1972). In the case that there is not porous layer and there 
exists rapid undulation, the time-independent equation reduces to the 
wave equation over rippled bed derived by Kirby (1986). When the 
permeability is very small, the time-independent equation reduces to the 
Kirby's equation. On the other hand, when the permeability is very 
large, the time-independent equation reduces to the Berkhoff s equation 
where the water depth is defined by a sum of the water depth and the 
thickness of porous layer. 

Numerical examples of the Bragg scattering were shown in one- 
dimensional case. The reflected and transmitted waves became small 
due to the permeability of seabed bottom. The reflection and 
transmission coefficients were influenced by the friction factor, the 
thickness of porous layer, and the porosity; however, there was little 
effect of inertia coefficient. 
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