
CHAPTER 37 

PROBABILITY CHARACTERISTICS OF 
ZERO-CROSSING WAVE HEIGHT 

by T. Ohta1  and  A. Kimura2 

Abstract 

This study deals with the probability distribution of 
zero-crossing wave height applying the definition of the 
zero-up(down)-cross method faithfully. In this study, gap 
between wave crest or trough and the envelope at the same 
location, which has been neglected in the ordinary studies is 
taken into account in the wave height definition. Its probability 
distribution is approximated with the Weibull distribution. 
The probability distribution of the zero-crossing wave height 
is, then, introduced theoretically together with the theory 
by modified Tayfun Method and the statistical properties of 
the gaps. The numerically simulated irregular wave height 
distributions agree well with the theoretical distribution. 

Introduction 

The Rayleigh distribution has been used as a probability 
distribution of zero—crossing wave height. Although this 
distribution agrees very well for the almost irregular wave 
height distributions, it was derived theoretically as a 
probability distribution of "wave amplitude" in the case of 
narrow band spectrum by Longuet—Higgins(1952). Therefore, the 
Rayleigh distribution is not the theoretical probability 
distribution for "wave height", even when the wave spectrum 
is narrow. Tayfun(1981,1983) tried to derive the probability 
distribution of the zero-crossing wave height on the basis of 
its definition faithfully. However, his distribution is 
considerably different from the Rayleigh distribution when 
the wave spectrum is wide. We know the Rayleigh distribution 
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can be applied to the probability distribution of zero-crossing 
"wave height" sufficiently. The agreements of the theory and 
data are mainly around its mean. Very few studies examined 
the wave height distribution in the very large part, larger 
than twice the mean wave height, for example. In the design 
of structural durability and reliability, however, reliable 
probability in a range over 2.5 times of the mean wave height 
may become necessary. This study aims at deriving the probability 
distribution of zero—crossing "wave height", applying the 
basic definition for the zero-crossing wave height and 
considering small errors which is inevitably introduced in 
the ordinary theory. 

Definition of Zero-Crossing Wave Height 

In a spectrum theory, the envelope for irregular wave 
profile has been used instead of the amplitude at crest and 
trough of zero—crossing wave. Fig.l shows irregular wave 
profile T|, its envelope R and their enlargements around t=t2. 
t|(t1), T)(t2) and r|(t3) show maxima or minima of r\. Rm , Rm and 
Rm are the simultaneous envelope amplitudes respectively. The 
zero-crossing wave height is defined, in principle, as a sum 
of consecutive maximum and minimum of r| between two zero-up 
or down-crossing points. For example, the wave height of the 
first zero-down-crossing wave in fig.l is described as 
H, = r] ftA + r)lt2]. In the ordinary theory, maxima and minima of 
zero-crossing waves are approximated by the simultaneous 
envelope amplitudes, then Hj is given by eq.l. 

Hl=Rmi+Rm2 (1) 

When the wave spectrum is very narrow, the envelope changes 
gradually. Longuet-Higgins(1952) assumed that wave amplitudes 
are equal to the envelope amplitudes, and we have been 
applying the Rayleigh distribution as the probability 
distribution of zero-crossing "wave height", putting H1=2Rnll. 
However, if the wave spectrum is wide, this assumption brings 
considerable errors. On the basis of eq.l, Tayfun(1981) 
derived probability distributions of zero-crossing wave height. 
Since the gaps between r\(t^) and Rm , which are shown by 5.J in 
fig.l, are order of v2 (Tayfun, 1989, v2 = m0m2/mf-1 , mn : n-th 
order spectral moment), he neglected them. However the zero- 
crossing wave height should be defined, in principle as 

«i = («-, + R..a)-(«i + «1) (2) 

To derive the probability distribution of zero-crossing wave 
height which basis on eq.2, it is necessary to make clear the 
additional probability distribution for Rm and 8j. The envelope 
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Fig. 1     Components of wave height 

Fig. 2 Probability distribution of R   (r = 5) 
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amplitudes R(t) follow the Rayleigh distribution , however, 
R is not statistically uniform samples from the population 
of envelope amplitude. In other words, because of the uneven 
interval between consecutive Rm, its distribution may be 
depart from the Rayleigh distribution. And there is no 
theoretical probability distribution for 8.. In this study, 
the probability distribution for Rm and 5.J are investigated 
experimentally through numerical simulations. 

Numerical Simulations 

The irregular wave profiles r| were simulated by FFT method 
(8192 points, At=0.05s). Next wave spectrum S(f) with variable 
shape factor r (r=4,5,6,7,8,9,10,15,20) is used in the 
simulations. 

«(/)= j|  exp 4    U 
(3) 

where, f is a peak frequency of S(f). The envelope R(t) was 
calculated by the following equation. 

R(t) = vV(0 + >72(0 (4) 

where, r\ is the Hilbelt transformation of r\. The histgram in 
fig.2 shows the frequency distribution of R(t). The theoretical 
probability distribution for R(t) is the Rayleigh distribution, 
however, we attempted to apply the Weibull distribution as a 
more general distribution (eq.5). 

pOO^-'eJ-^l (5) 

where, x = RIR 

r{(l + a)/a} 

a is the shape parameter, y i-s the scale parameter and T is 
the Gamma function. In fig.2, the solid line shows the 
Weibull distribution whose shape parameter ce=2.027 and scale 
parameter Y=0-639. In the case of a=2.0 and y=0.621, it is 
the Rayleigh distribution. Therefore the probability 
distribution for R(t) agrees well with the Rayleigh distribution. 
The histgram in fig.3 illustrates the frequency distribution 
of Rm . In this case, the spectral shape parameter r is 5. 
Applying the Weibull distribution to this frequency 
distribution, we obtained a result that the shape parameter 
a2=1.864 and the scale parameter Y2=0*697- Tne solid line in 
fig.3 shows that Weibull distribution. In fig.4, the histgram 



ZERO-CROSSING WAVE HEIGHT 501 

Fig.3 Probability distribution of Rmj   (r = 5) 
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Fig. 4 Probability distribution of 8 i (r = 5) 

Tab. 1   Parameters for Weibull distribution 

r V "1 Yi a2 Y2 si Prnj 

4 0.5571 0.6325 0.08649 1.829 0.8065 0.08469 1.154 

5 0.4041 0.6394 0.06427 1.864 0.6975 0.05435 1.062 

6 0.3247 0.6418 0.05081 1.898 0.6223 0.03802 0.9959 

7 0.2768 0.6430 0.04274 1.939 0.5666 0.02891 0.9459 

8 0.2444 0.6394 0.03767 1.975 0.5193 0.02356 0.9037 

9 0.2205 0.6467 0.03262 1.921 0.4792 0.01955 0.8677 

10 0.2018 0.6546 0.02900 1.941 0.4495 0.01701 0.8395 

15 0.1514 0.6690 0.01988 1.941 0.3548 0.01043 0.7432 

20 0.1256 0.6942 0.01462 1.988 0.2999 0.00775 0.6854 

shows the frequency distribution of 8^ when the spectral shape 
parameter r is 5. Solid line shows the Weibull distribution 
with shape parameter cc1=

:0.639 and scale parameter Y1=0.0643. 

The results for other spectral shape parameters, whose range 
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Fig. 5 Shape parameters of Weibull distribution 

is from 4 to 20, are given in tab.l. Fig.5 shows shape 
parameters of the Weibull distribution. The open circles show 
the shape parameters of the Weibull distribution for Oj and 
the closed circles show those for Rm . Horizontal axis shows 
the spectral band width parameter v. As v increases, the 
shape parameter of the Weibull distribution has tendency to 
decrease. The distributions obtained become a little flatter 
shape compared with the Rayleigh distribution. We concluded 
that uneven sampling from the population of R(t) causes this 
deviation from the Rayleigh distribution. 

Probability Distribution of Wave Height 

It is confirmed so far that the probability distributions 
for Rm. and Oj are well approximated by the Weibull distribution. 
To derive the probability distribution of wave height with 
the definition as eq.2, it is necessary to investigate the 
following points. 

1. The joint probability distribution between consecutive 
envelope amplitudes Rm. and Rm.H ; p(Rm ,Rmj+1> 

2. The joint probability distribution between 5^ and oj+1 ; 
P(63,5j+1) 

3. The joint probability distribution between Rm=(Rm.+Rm.+ ) 
and 6=(6j+8j+1) ; p(Rm,5) 

First of all, the probability distribution for Rm and R 
are also approximated by the Weibull distribution. The shape 
parameter is denoted by a2.   Since the interval between Rm and 
R   is about half of the mean period, Rm and Rm  must have mj+1 *• mj        mj+i 

correlation. With only above limited conditions, however, it 
is not possible to determine the joint probability distribution 
theoretically. In this study, we use the 2-dimensional Weibull 
distribution (Kimura, 1981) as the joint probability distribution 
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'f«»•.«». ,) = —7 r I 1 I* 1  I ^12 2 I 

• exp/ -- 
2 r2-p 

R,"2 + «:2. 
na2/2 Da2/2 

(6) 
y2-p 

where, i0 is the modified Bessel function of the first kind 
(0-th order), p is the correlation parameter between Rm and 
R„ • 

p=Ky2 

and K is given as following (Kimura and Ohta,1992) 

f*i3=["s(/) cos {in (f-f)t„ 

M,4 = //" «(/) sin { 2K(/-/H„ 

(7) 

(8) 

df 

4f 

fd = [ -0.186/ r + 0.735 )/„ 

/, = ( 1.61 /r + 1.62) /„ 

/=m,/m0     ,      tm = <jmj t 

(4 £ r s 20) 

(4 s r £ 20) 

Because Rm is not normalized by its mean, the scale parameter 
Y2 is given as follows. 

)V rl (1 + a2) / oe3 

(9) 

Fig.6 shows that the 2-dimensional Weibull distribution agrees 
well with the simulated joint frequency distribution between 
Rm and R„ . Three cases of r=5,10 and 20 were shown in irij mj+1 ' 

fig.6. Similar agreements are obtained in other cases 
(r=4,6,7,8,9,15). 
Second, the probability distribution for 8. and §.+1 are also 

approximated by the Weibull distribution. The shape parameter 
is described by ax. Open circles in fig.7 show the correlation 
coefficients between 5^ and 5j+1, and fig.8 illustrates the 
distribution of 6^ and 5j+1 in the case r=5. Although calculated 
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Fig. 7 Correlation coefficients 
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Fig. 8  Distribution of 8j and 6j+1   (r = 5) 

correlation coefficient is about 0.2 in this case, we can not 
see apparent correlation as shown in fig.8. Considering 8j 
and oj+1 are independent, then, we tried to apply the product 
of Weibull distribution as a joint probability distribution 
between bj  and 8j+1, p( 6S ,6j+1). 

P(*y.«y..) = 4y 
Y6p-'s;r exp 

2ri\°?l + W) (10) 

Since 8- is not normalized by its mean, the scale parameter Yj 
IS gxven as 

1 rl(1 + a,)/a, a.."1 

(11) 

Fig. 9 illustrates a comparison between the product of the 
Weibull distribution and the simulated joint frequency 
distribution of 8^ and 8j+1 in the cases of r=5,10 and 20. 
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Third, the joint probability distribution between Rm=(Rm+Rm ) 
and 8=(5j+5j+1) is determined by using above results. Closed 
circles in fig.7 show the correlation coefficients between Rm 
and 8. Although the calculated values are about -0.1, we 
consider Rm and 8 to be independent. Therefore, the joint 
probability distribution between Rm and 8 is given by the 
product of the probability distribution for Rm and it for 8. 

Using above results, we derive the probability distribution 
of zero-crossing wave height. First, the probability 
distribution for Rm, which is denoted by p(Rn), is given as 
eq.(12). 

P*.= 
Mri 

R.„- R. 

• exp 

Ayi-p 
'«,„-«„ 

:;/2 («„-«,„, p/2 

Yt~P 
dR„, 

(12) 

Second, the probability distribution for 8, which is described 
bY P(S)f is given as following. 

P(6) 
4r,2 

S-d; 

exp ^{*",+(a-M"'} d6. 

(13) 

The zero-crossing wave height is defined as H=Rm-8, and the 
probability distribution of H can be obtained by 

TROPICAL r»H 
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Fig.10(a)  Wave height distribution (r=5) 
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Fig.10 (b) Wave height distribution (r= 10) 

Fig.10(c) Wave height distribution (r=20) 
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Fig. 11   Exceedance probability 
(chain line : r=5, dotted line: r=10, broken line: r=20, solid line: Rayleigh) 

P(.H) 
4 Irl-P2) 

exp 
'•{r?-p2)\  m' 

R"*+  R„-R„ 

^(S--^)"^ 

1i-P 
dR„ 

4y,' 
or1 [*.-"-*,y 

exp 
1 

"2y, 
R„-H-d, d&,    dRm 

(14) 

As results of the numerical calculation of eq.(14), the 
probability distributions of zero-crossing wave height are 
obtained as shown in fig.10(a)-(c) . (a) is the case when the 
spectral shape parameter r=5, (b) r=10 and (c) r=20. The 
solid line shows the present theory and the broken line shows 
the Rayleigh distribution. Fig.11 shows the exceedance 
probability of wave height. The chain line, dotted line and 
broken line show the distribution when r=5,10 and 20, and 
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solid line shows the Rayleigh distribution respectively. We 
can see considerably larger probability than the Rayleigh 
distribution when r=5. 

.Conclusion 

The probability distributions of zero-crossing wave height, 
when the gap between maximum(minimum) of wave profile and the 
simultaneous envelope amplitude is taken into account, were 
derived. As the result, larger probability of exceedance than 
the Rayleigh distribution was obtained in the range of larger 
wave height, when the spectrum is wide. 
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