
CHAPTER 36 

NON-GAUSSIAN PROBABILITY DISTRIBUTION OF COASTAL WAVES 

Abstract 

This paper presents the development of a probability density 
function applicable to waves in finite water depth (which can be 
considered to be a nonlinear, non-Gaussian random process) in closed 
form. The derivation of the density function is based on the Kac- 
Siegert solution developed for a nonlinear mechanical system, but the 
parameters involved in the solution are evaluated from the wave 
record only. Further, the probability density function is asympto- 
tically expressed in closed form. Comparisons between the presently 
developed probability density function and histograms constructed 
from wave records show good agreement. 

Introduction 

The wind-generated wave profile observed in a sea of finite 
water depth is significantly different from that observed in deep 
water in that there is a definite excess of high crests and shallow 
troughs in contrast to those of waves in deep water. This is 
attributed to nonlinear wave-wave interaction (energy transfer) 
between component waves, and such waves are considered to be a 
typical non—Gaussian random process. 

Probability distributions applicable for presenting non-Gaussian 
random waves have been derived through three different approaches; 
(a) application of the orthogonal polynomials to the probability 
density function [Longuet-Higgins 1963], (b) application of Stokes 
wave theory [Tayfun 1980, Huang, et al., 1983], and (c) application 
of the Kac-Siegert solution [Langley 1987]. 

Derivation of the non-Gaussian probability density function by 
applying the concept of orthogonal polynomials is well—known as the 
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Gram-CHarlier series probability density function. The probability 
density function, however, is given in series form. Therefore, the 
density function usually has a negative value at some part of the 
distribution caused by the finite number of waves used in computing 
the density function. 

The probability density function derived based on the applica- 
tion of Stokes waves imposes a preliminary form on the wave profile 
such that the individual waves are expressed as a Stokes expansion to 
the 2nd or 3rd order components. It is highly desirable to justify 
the validity of the assumption involved for random waves, particular- 
ly waves in shallow water. On the other hand, the probability 
density function derived by application of the Kac-Siegert solution 
appears to be pertinent for waves in finite water depth, since the 
solution represents a nonlinear, non-Gaussian random process. The 
probability density function, however, cannot be presented in closed 
form. Hence, it is not possible to develop a probability density 
function applicable to wave height therefrom. 

This paper presents a probability density function applicable to 
waves in finite water depth which can be considered to be a 
nonlinear, non-Gaussian random process. The density function is 
derived based on the Kac-Siegert solution through spectral analysis. 
During the course of analysis, the wave spectrum is decomposed into 
linear and nonlinear components in order to clarify the degree of 
nonlinearity involved in shallow water waves. Furthermore, the 
probability density function is derived in closed form so that it can 
be used for derivation of the distribution functions applicable to 
peaks and troughs of waves in finite water depth. 

Basic Concept 

The basic concept of the analysis applied in the present study 
is that the stochastic characteristics of waves in finite water depth 
may be considered to be the same as those of the output of a 
nonlinear mechanical system. In order to elaborate on this concept, 
let us examine the variation of wave profiles observed from deep to 
shallow water. 

Figure 1 shows portions of wave records obtained by the Coastal 
Engineering Research Center, US Army, during the Atlantic Ocean 
Remote Sensing Land-Ocean Experiment (ARSLOE) project in 1980 at 
Duck, North Carolina. Included in each figure is the distance from 
the shoreline at the location where data were taken. As can be seen, 
the wave profile recorded by Gage 710 (obtained at the deepest of the 
three locations) is almost the same as that observed in deep water 
waves. As the water depth decreases, the wave profile shows a 
definite excess of high crests and shallow troughs which is a typical 
feature of a non-Gaussian random process. In other words, the wave 
profile transforms from a Gaussian random process to a non—Gaussian 
random process as they move from deep to shallow wave areas. 

Let us compare the transformation of wave profiles from deep to 
shallow water with the output of a nonlinear mechanical system having 
a Gaussian random input with various degrees of nonlinearity.  The 
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Figure  1: 
Portion of wave records obtain- 
ed during ARSL0E Project at 
locations Gage 710, 625, 675 
and 615. 

output of a system with very weak nonlinearity may be considered as 
a Gaussian random process. However, the statistical properties of 
the system's output show increasing non-Gaussian characteristics with 
increase in the intensity of system's nonlinearity. Thus, we may 
consider the augmentation of the non-Gaussian characteristics of 
waves with decreasing water depth to be analogous to that observed in 
the output of a nonlinear system as its nonlinearity increases. 

With this basic concept in mind, we may apply the unique solu- 
tion of the output of a nonlinear system developed by Kac-Siegert 
[1947] to nonlinear waves. That is, the output (response) of a non- 
linear system which can be presented by Volterra's stochastic series 
expansion can be presented in terms of the standardized normal random 
variable as follows: 

y(t) 
N 

z fa z 
j + AJ zj) (1) 

where    y(t)  - output of a nonlinear system 

z^ - standardized normal variate. 

The parameters f)i     and \i     are  evaluated by  finding the 
igenfunction and eigenvalues of the integral equation given by 

JK(WI,U2)^J(W2)C1U2 = Aj V'j ("l) (2) 
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where       K(ui,U2) - H(u]_,u2)yS (&>]_) s(w2) 

VM (<*>) " orthogonal eigenfunction 

H(o>i,U2) = 2nd order frequency response function 

S(u) = output spectral density function. 

As can be seen, knowledge of the 2nd order frequency response 
function, H(u^, £02) i-s necessary in order to solve the integral 
equation given in Eq.(2), but there is no way to evaluate it for 
random waves. Recently, however, the authors developed a probability 
density function applicable to the response of a nonlinear mechanical 
system in closed form based on Kac-Siegert's solution without know- 
ledge of the second order frequency response function [Ochi and Ahn 
1994]. Based on the analogy between the nonlinear mechanical system 
and transformation of wave profiles as they move from deep to shallow 
water, this paper presents the application of the authors' method in 
the above reference to the analysis of waves in finite water depth. 

An approach to evaluate the nonlinear properties of random waves 
by applying the Kac-Siegert solution was considered earlier by 
Langley [1987]. Our approach, however, differs from Langley's 
approach in that (i) the wave spectrum is decomposed into linear and 
nonlinear components in order to examine how notably the nonlinearity 
increases with decreasing water depth, (ii) spectral analysis method- 
ology instead of wave potential theory is applied in evaluating the 
parameters f): and \i , and (iii) the probability density function 
applicable to wave profile y(t) is presented in closed form. 

Presentation of Nonlinear Waves 

Let us write the surface profile of nonlinear waves as follows: 

/  N    n   £       i(«kt*£k)        £  £ y(t) - Re £ ck e ^k   kJ  + Re £ £ ck ct 

k=l k=l«=l 

i{(wi,-Un)t + £_} 
+ rW e u k    *•' I 

{(wk+U{)t+€+} 
qki e 

(3) 

where u    = frequency, e    — phase lag. 

qk£ is a coefficient associated with (uk + Wj>) which is the sum 
of the interaction between two frequency components uk and co», while 
r^g is associated with the interaction differential between 10^ and 
u>^. Since there is a phase shift between the frequencies, wk and cdn, 
in general, these interaction coefficients are complex numbers. 

Equation (3) has often been considered for simulation studies as 
well as for analysis of nonlinear ocean waves in which the inter- 
action coefficients are evaluated from second order nonlinear wave 
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theory   [Hasselmarm   1962,   Hudspeth   and   Chen   1979,    Sharma   and   Dean 
1979,   Anastasiou et al.   1982,   etc.]. 

Let us write  the  first term of Eq.(3)  as  follows: 

yiCt)  =   £ ck e1 "k    + £k    =   IT ck {cos(ukt + £k)  + isin(okt + £k)} 
k-1 k=l 

(4) 

We assume that the linear component y^(t) is a narrow-band 
Gaussian random process. By ignoring the factor pg, (l/2)c£ repre- 
sents the spectral density, S]j(c<)k)Au, where the subscript L stands 
for the spectral density of the linear wave components. That is, the 
spectral density at a = ujj is written by 

sic » {SL(uk)AU}V2 = • 

uk + (Aw/2) 

f- 
1/2 

(5) SL(U) du 

v      uk-(Aw/2) 

Then by defining 

ck cos(wkt + £k) = sk • uk,    and   ck sin(6kt + £k) = sk • vk , (6) 

the  linear component can be written as 

N 
yi(t) =Re   £   sk(uk+iuk). (7) 

k=l 

The second term of Eq.(3) can be similarly written as 

N  N 
y2(t)=Re£ V sk s$ { qk^(uk + iuk) (u{ + i.vt) 

k=l f=l 

* rk*(uk + i«k)(ui _ ivO  }> where st  = {sL(w^)Au } /  (8) 

Then, by taking the real-part of Eqs.(7) and (8), the nonlinear wave 
profile can be presented as follows: 

N 
y(t) =yx(t) +y2(t) = £ skuk 

k=l 

N  N (9) 
+ £  E 1sks{(qk« + rk{) uku« + SkS^(qk^ - r^i)vyivi \ 
k=l €=1 
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Separation of Linear and Nonlinear Components of Wave Spectrum 

Several methods for decomposing a wave spectrum into linear and 
nonlinear components have been developed to date. These include Tick 
[1959, 1961], Hamada [1965], Hudspeth and Chen [1979], Masuda, et al. 
[1979] and Anastasiou et al. [1982], among others. Almost all of 
these methods for evaluating the nonlinear part are based on the 
second order interaction kernel of a weakly nonlinear solution. Kim 
and Power [1979], on the other hand, have developed a method using 
the bicoherent spectrum to separate the nonlinear wave-wave inter- 
action of coherent waves in plasma fluctuation data. Their method 
may be applied for separation of the spectral energy density of a 
random process with strong nonlinear characteristics. 

Since the Kim-Power method was developed to evaluate the wave- 
wave interaction associated with two arbitrarily chosen constant 
frequencies, the method is extended in the present study so that any 
two frequencies associated with wave-wave interaction are not 
constant; instead they are variables. This implies that the non- 
linear component of the spectral density at a frequency o>m is equal 
to the accumulation of nonlinear interaction associated with various 
pairs of frequency components w^ and Up under the condition that u^ 
+ u» = um. Furthermore, we consider the interaction not only at the 
frequency (w^. + Ui) but also at the frequency (wk - u.), where u^ -> 

w». The latter is equivalent to the sum interaction between co» and 
(ujj -u,). In evaluating the interaction at the frequency (w^ - u^), 
it is assumed that the spectral energy density at frequencies smaller 
than the minimum frequency of the main energy density in the spectrum 
(u>s in Figure 2) is due to nonlinear interaction associated with the 
difference between various combinations of the two frequency com- 
ponents at Ujj and Up. The spectral density for frequencies greater 
than ws is due to the nonlinear interaction associated with the sum 
of various combinations of two frequency components. 

Let us evaluate the interaction due to the sum of two frequency 
components. We may write the Fourier transform of y(t) at the 
frequency wm as follows: 

Y(<%) = YL("m) +   E    AL(wk,W£) YL(uk) YL(wf),    (10) 
"k+w«=wm 

where  YL (up = Fourier transform of the linear component y^(t) at 
the frequency j, 

AL(wk'w^)   • coupling coefficient. 

The summation in Eq.(lO) is for various combinations of compo- 
nents at ujj. and u^ where co^ + u^ - um, and that the second term is a 
convolution in discrete form. The coupling coefficient AL(ujc, Up) 
can be obtained by multiplying each side of Eg,(10) by the product of 
the conjugates of YL(w]j) 

and YL(WP> YL^uk) ^L^P ' and by takinS the 
expected value.  That is, 
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Figure  2:   Definition of 
frequency W   . 
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where B*(wk,U£) = conjugate of the bispectrum B(uk, Wg). It should 
be noted that the domain of the bispectrum in this case is limited to 
that in Bs as indicated in Figure 3. 

The spectral density function at the frequency um can be 
obtained from Eqs.(lO) and (11) as 

S(<%) =E[|YL(«m)|
2]+   £   |AL(uk,U){)|

2 • E[|YL(«k) YL(co{)|
2] 

Uk+W£=tOm 

= E[|YL(wm)|
2]*   £    (b(Wk,^)}

2 -S(u,m), 
Uk+W£=Um (12) 

where  b(«k,wj>) = 
|B("k."£)|2 

E[|YL(Uk) YL(^)|
2 j E[|Y(cV|2] 

1/2 

(13) 

The second term of Eq.(12) represents the accumulation of energy 
densities associated with interactions which occur at the frequency 
wk + «£. It is noted that E[|YL(wk) YL(u^)|

2] in Eq.(12) is unknown 
in advance; hence we may evaluate E[|Y(uk) Y(u„)|

2] for a given 
spectrum, and use it as an initial value in finding b(uk, u.) by 
iteration. 

For the nonlinear components which occur at the frequency 
(u>k - up, B*(wk, wq)  as well as B(wk, u^) in Eq.(12) are replaced by 
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B*(cjg, w^ - to») and B(ug, w^ - <0g), respectively. Note that the 
domain of the bispectrum B(u^, u^-w^) is limited to that in (B - Bs) 
as illustrated in Figure 3. 

As an example of application of the method for separating the 
spectrum into linear and nonlinear components, Figures 4 through 6 
show the results of computations carried out on three wave records, 
Gages 710, 625 and 615; a portion of each record is shown in Figure 
1. It can be clearly seen in these figures that the ratio of non- 
linear energy to total energy increases as water depth decreases. 
That is, for the Gage 710 wave record (depth 21.4 m), there exists no 
appreciable nonlinear energy component in its spectrum. On the other 
hand, for the Gage 625 record (depth 9.94 m), an appreciable amount 
of nonlinear energy exists at low and high frequencies, and the same 
trend can be observed on the Gage 615 wave record (depth 2.28 m) with 
substantial increase of nonlinear energy. It is noted that no non- 
linear component exists in the neighborhood of the frequency where 
the spectrum peaks irrespective of sea severity. 
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Figure 4: Separation of linear 
& nonlinear components of spec- 
trum for wave record Gage 710. 

Figure 5: Separation of linear 
& nonlinear components of spec- 
trum for wave record Gage 625. 

Figure 6: 
Separation of linear and non- 
linear components of spectrum 
for wave record Gage 615. 

FREQUENCY IN RPS 
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Evaluation of Interaction Coefficients q^j and r^n 

The interaction coefficients qkp and rkp in Eq.(9) can be 
evaluated through bispectral analysis of the wave y(t). 

The bispectrum BC^, Up) is most commonly evaluated in the fun- 
damental region, which is the octant, the domain defined by 0<up:Suk 
and 0<W]j<oo as shown in Figure 3. The volume under the bispectrum is 
equal to the 3rd moment of y(t) if the mean value of y(t) is zero. 
That is, 

N  N 
E {y(t)}3 ] = 6 £ £ Re (B(Uk,^)}. <14> 

L      J   k=l IRL 

On the other hand, the 3rd moment of y(t) = y^(t) + y2(t) can be 
obtained as 

E[{y(t)}3] = 3E[{yi(t)}
2y2(t) ] + E[{y2(t)}

3]. (15) 

Note that y^Ct) is a normal distribution with zero mean, therefore 
E[{yi(t)}3] and E[yi(t){y2(t)}

2] are zero. 

Since the linear component yi(t) is usually much greater than the 
nonlinear component y2(t), the second term of Eq.(15) may be neglec- 
ted in comparison with the first term.  Hence, we have from Eq.(9) 

N     N 
E[{y(t)}3] = 3E[{y1(t)}

2y2(t)] = 6   £   £   s£ s£ (qk£ + rk{).     (16) 
k-i.e-i 

Then, Eqs.(14) and (16) yield 

E E Wk« + rk«) - E E  5—?  (17) 
k=l {=1 k=l k=l   s£ s| 

As stated in earlier, the domain of the bispectrum applicable 
for the interactions associated with the sum of two frequency 
components is Bs as shown in Figure 3. Therefore, from Eq.(17), the 
interaction coefficient qkp can be obtained as 

qk* = • £  2  Bs("k-^)- (18) 
sk SJ> 

Similarly, the interaction coefficient r^g can be evaluated as 
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rk« =     %    2 {B(w«'wk " w«> - Bs("k'u«)}- •y—j {*(»*,»k - <o{; - Bs<."k.u^|- (19) 
sk si 

Application of the Kac-Siegert Solution 

The functional relationship between parameters j3s and A* in the 
Kac-Siegert solution and the spectral densities of the linear wave 
components, s^ and s«, as well as the interaction coefficients qj^g 
and r^o are presented by Langley [1987] in a concise matrix form. 
Although our methods of deriving the linear wave component as well as 
the interaction coefficients are quite different from Langley's 
methods, the functional relationship between (pi, \i) and (s^, s^,, 
qjjP, r^») can still be applied to the present problem. That is, 
Langley presents Eq.(9) as follows: 

y(t) = s'u + u' (Q + R)u + v' (Q - R) v. (20) 

where Q  and R are real symmetric matrices whose k£-th components are 
sk st %:{ ancl sk si rk{' anc* —' — ant* — are vectors whose k-th 
components are s^, u^. and u^, respectively. We may write the two 
matrices in Eq.(20) as 

2 + R = w, A-^ w-^ 
(21) 

2 " 1 = B -2 -2 

where the column vectors of W-j (j = 1, 2) are normalized ,eigenvectors. 
They are orthonormal vectors satisfying the condition w. w.= I, where 
I is the identity matrix. The elements of the diaginaT. matrices 
Ai (j = 1, 2) are eigenvalues of matrix Q + R and Q — R, respectively. 
Since Q + R and Q - R are N by N symmetric matrices, there is a total 
of 2N eigenvalues. 

Let us write 

j = 1, 2, N 

j = (N + l), 2N 

(22) 

where z* are independent standardized Gaussian random variables. 
Then, Langley has shown that Eq.(20) can be reduced to the Kac- 
Siegert formulation given in Eq.(1) with the following relationships: 

fe'wjj ,       j = 1, 2, N 

0 j = (N+l) 2N 
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j  -1.  2, 

j  = (N+l) , 
(23) 

2N 

Since the parameters of the Kac—Siegert solution are obtained 
through spectral analysis, the probability density function applic- 
able to nonlinear, non-Gaussian waves can be derived numerically with 
the aid of the characteristic function as suggested by Kac-Siegert. 

As an example, the method is applied to the Gage 615 wave record 
which indicates strong nonlinear characteristics. A comparison be- 
tween the probability density function and the histogram constructed 
from the data is shown in Figure 7. Excellent agreement between them 
can be seen in the figure. This result implies that the Kac—Siegert 
solution evaluated from the time history of waves yields a probabil- 
ity density function representing the statistical properties of waves 
in finite water depth which have strong nonlinear characteristics. 
It is unfortunate, however, that the probability density function 
cannot be obtained in closed form. 

Figure 7: 
Comparison of probability den- 

- sity function obtained from the 
Kac-Siegert solution and his- 
togram constructed from data 

• for wave record Gage 615. 

-1.5  -1.0  -0.5  0.0  0.5  1.0  1.5 

DEVIATION FROM MEAN VALUE IN METERS 

Asymptotic Probability Distribution for Non-Gaussian Waves 

One method for deriving the probability density function in 
closed form is to present the Kac-Siegert solution (Eq.l) as a 
function of a single random variable instead of the summation of the 
standardized normal distribution and its squared quantity. For this, 
let us present Eq.(1) as 

Y = U + aU' (24) 

where "a" is a constant (unknown) and U is a normal variate with mean 
/j* and variance a^, both of which are also unknown. The value of 
these unknowns will be determined from the following three equations 
which are derived by equating the cumulant generating function of 
Eq.(24) with that of Kac-Siegert's solution given in Eq.(l) (see Ochi 
and Ahn 1994). 
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2    2 
aat +  a/j^ + p* =  0 

2N 2N 

( E /»j ) + 2 ( E >j 2a2at (25) 

2N  0       2N  .      . 
3( E /*j\j) + M E A] ) - 3aa* - 8a3a' 

j=l  J        j=l 

3 6 

It should be noted that the left side of Eq.(25) can be presen- 
ted in terms of cumulants, k]_, k2 and k3. If we have a wave record 
obtained for a sufficiently long time (on the order of 20 minutes) 
and if we let the mean value be the zero line, we have ki — 0, and 
thereby fy anc* k3 are equal to the sample moments E[yz] and Efy0], 
respectively. Thus, we can determine the unknown parameters a, fi# 
and a£ by simply evaluating the sample moments from the wave record 
y(t) and by applying the following relationship: 

2    2 
aat  + a/ij + /J* = 0 

a2-2a2at=E[x2] 

2a<4 (3 - 8a2CT2) - E[x3]. 

(26) 

Since the random variable U in Eq.(24) is now a normal variate 
with known mean fi* and variance a^, the probability density function 
of Y can be derived by applying the technique of change of random 
variables from U to Y. Unfortunately, however, the density function 
thusly derived vanishes at a point y = -(l/4a) due to a singularity 
involved in the density function. 

In order to circumvent this drawback, let us present the 
functional relationship between Y and U given in Eq.(24) inversely 
such that the random variable U is expressed as a function of Y as 
follows: 

U -I1 7a > 
-7aY (27) 

where 7 is a constant; 1.28 for y > 0 and 3.00 for y < 0. 
Justification for selecting these constant values of 7 is given in 
Ochi and Ahn 1994. It may suffice here to say that these constants 
are valid even for a random process with very strong nonlinear 
characteristics. 

It is noted that the values of 7 are different for positive and 
negative y-values. This results in a slight difference in the slope 
of the probability density function at y = 0, although the density 
function is continuous at this point. 
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By using the functional relationship given in Eq.(27), we may 
derive the probability density function of Y from the random variable 
U which obeys the normal distribution with mean /J* and variance a^. 
The change of random variables technique yields the probability 
density function of Y as follows: 

f (y) - 
2(yaai,)2 

•fl* 

7a/i* 
-7ay >2 

7ay 

(28) 

where 

•{ 
1.28    y>0 

3.00    y < 0 . 

By applying the method for determining the limit of an 
indefinite function, it can be easily proved that Eq.(28) reduces to 
a normal probability density function with mean ^i* and variance a^ if 
a — 0; namely, for a linear system. 

Figure 8 shows a comparison of the newly developed asymptotic 
probability density function with the histogram of the Gage 615 wave 
record. The parameters a, p* and o£ are determined from Eq.(26). 
Included also in the figure is the normal probability density 
function with zero mean and the variance evaluated from the record. 
As can be seen in the figure, the histogram deviates from the normal 
density function to a great extent; but, the agreement between the 
histogram and the newly developed probability density function is 
excellent. 

Figures 9 and 10 show comparisons between the probability 
density function given in Eq.(28) and histograms for the Gage 625 
(water depth 9.94 m) and the Gauge 710 (water depth 21.4 m) , 
respectively. In the latter case, the probability density function 
is normally distributed and agrees very well with the histogram. 

X 
M     1.0 ^ 

,PRESENTLY DERIVED 
/ PROBABILITY DENSITY 
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Figure 8: Comparison of present- 
ly developed probability density 
function and histogram con- 
structed from data for wave 
Gage 615. 
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Figure 9: Comparison of present- 
ly developed probability density 
function and histogram con- 
structed from sata for wave 
Gage 625. 
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Figure 10: 
Comparison of presently devel- 
oped probability density func- 
tion and histogram constructed 
from data for wave record Gage 
710. 

-1.0 -3.0 -2.0 -1.0 0.0  1.0  2.0  3.0  1.0 

DEVIATION FROM MEAN VALUE IN METERS 

From the results of these comparisons, it can be concluded that 
the probability density function covers the non-Gaussian distribution 
observed for random waves in shallow water as well as the Gaussian 
distribution observed for random waves in deep water, and that the 
probability density function agrees very well with the histograms 
constructed from wave data. 

Conclusions 

This paper presents the results of a study on a probability 
density function applicable to waves in finite water depth developed 
based on the concept of Kac-Siegert's solution for the output of a 
nonlinear mechanical system. Although the Kac-Siegert solution 
requires knowledge of the second order frequency response function of 
the system, we developed a method to evaluate the parameters involved 
in the solution only from measured waves through spectral analysis. 
Further, the probability density function associated with the Kac- 
Siegert solution is asymptotically expressed in closed form (Eq.28). 
The presently developed probability density function covers the 
non-Gaussian distribution observed for random waves in shallow water 
as well as the Gaussian distribution observed for random waves in 
deep water. Comparison between the probability density function and 
histograms constructed from wave records show good agreement. 
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