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A Generalized Green-Function Method for Wave Field Analysis 
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Abstract 

The Green-function method for analyzing wave refraction, diffraction and 
reflection is improved by deriving rational explicit formulations of boundary con- 
ditions. Possibilities and limitations of the method are discussed. Trial compu- 
tations and their comparisons with experiments demonstrate the validity and 
usefulness of the numerical model. 

Introduction 

To analyze refraction, diffraction and reflection of simple sinusoidal waves 
is one of the very fundamental problems in the field of coastal engineering. If an 
accurate and simple method is provided for this purpose, deformation of irregular 
waves may also be analyzed through superposition of solutions for constituent 
waves. In this context, numerical modeling based on the Green-function method 
is quite promising since it describes the diffraction and multiple reflection of 
waves more accurately than any other methods. This kind of numerical model 
was first proposed by Barailler and Gaillard (1967), and has been widely used 
in particular for simulation of waves in semi-closed sea basins. In numerical 
models presently used, however, continuation of solutions are often insufficient 
at artificial boundaries. 

In the following sections, rational explicit formulations of boundary condi- 
tions is- derived for more rigorous computation of two-dimensional wave fields. 
Validity of the numerical model thus improved is examined through trial com- 
putations and their comparisons with experiments. 

1Professor, Inst. of Eng. Mech., Univ. of Tsukuba., Tsukuba, Ibaraki, 305, Japan. 
2Senior  Researcher,   Applied  Hydraulic Laboratory,   Nippon  Tetrapod  Co.,   Ltd.,   2-7 

Nakanuki, Tsuchiura, Ibaraki, 300, Japan. 
3Ditto. 

442 



GENERALIZED GREEN-FUNCTION METHOD 443 

Principle of the Green-Function Method 

If we express the wave profile ((x, y, t) in a water area with a uniform depth 

( = f(x,y)-ei»t (1) 

the complex amplitude f(x,y) satisfies the following Helmholtz equation: 

*'-+U+*f-<> (2) 
9a;2      dy2 

where (a;, y) is the Cartesian coordinate in a horizontal plane, t is the time, LO is 
the angular frequency, and k is the wave number. 

Suppose the existence of a perfectly reflective wall along the x-axis and 
a wave source at a point (£,??), as shown in Fig.l. It is well known that the 
resulting wave field in the semi-finite region of y > 0 is then 

f(x,y) = -^[Hl)
1\kr+) + HU(kr-)} 

r± = yj{x-Z)2 + {y^r1y 

(3) 

(4) 

5* X 

(*,-y) 

Figure 1: Definition sketch. 
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in which HQ ' denotes the zeroth-order Hankel function of the first kind. Note 
that the complex source intensity r represents the wave phase as well as the 
amplitude. The solution (3) satisfies the basic equation (2) and, at the same 
time, the boundary condition <9(/i + j-i)jdy = 0 along the «-axis. It also satisfies 
Sommerfeld's radiation condition toward the infinity. 

For a particular case that the wave source is located on the z-axis (r) — 0), 
the expressions (3) and (4) are simplified as follows: 

f(x,y) = ~H^(kr) (5) 

r± = y(a!_fl2 + j,2 (6) 

Distribution of such wave sources along the boundary of a water area will cause 
a composite wave field, which is expressed by the integration of the unit solution: 

f(z,y) = Jci(s)-Hii
1)(kr)ds (7) 

where s is the coordinate taken along the boundary C, r is the distance from 
the boundary point (s) to the point (x,y), and 7(s)ds corresponds to the wave 
source intensity r in Eq.(5). The wave source distribution has to be determined 
so that the resulting wave field satisfies all the boundary conditions imposed, as 
correctly suggested by Lee (1969, 1971) for harbor oscillation analysis. 

Relationship between the Source Intensity and Wave Amplitude on a Boundary 

Consider the situation that wave sources in the semi-infinite region of y > 0 
produce a wave field f\(x,y). As to the waves propagating across the a;-axis, 
the following relationship proves from Green's theorem between the complex 
amplitude and its gradient in the ^-direction: 

/,M) = -jr»        ^\k\x-^C (8) 
l J-oo       or)       ^-o 

On the other hand, a similar relationship is obtained for a wave field fi{x, y) 
which is produced in the same region by the source distribution 72(a) along the 
a;-axis: 

f^,y) = --2r
dJf^      -BPlkrW (9) 

Z J-00 OTI n=0 

It can thus be concluded that the source intensity is directly proportional to 
the local gradient of resulting wave amplitude in the normal direction to the 
boundary: 
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(10) *«)=4-8/a(^ 2      drj n-0 

Condition of Reflective Boundary 

If £-axis is a perfectly reflective boundary in the above discussion, then the 
incident waves fi(x,y) and reflected waves J2{x,y) appear in the semi-infinite 
region. The boundary condition in this case is 

d(/i + /2) 
= 0 (11) 

y=0 dy 

which leads to the following simple expression of the source intensity: 

idf2(t,ri) 
72 U) 

2      dr) 
(12) 

j)=0 

In rigorously formulating a condition of partial reflection, hydraulic mech- 
anism of wave reflection has to be known. A conventional method for simulating 
the partial reflection is to simply reduce the source intensity by multiplying the 
reflection coefficient /3 as follows: 

72(0=-J^T (13) 
!J=0 

Continuation of Solutions along an Open Boundary 

For the convenience of numerical computation, the whole region in ques- 
tion is often divided into subregions by supposing imaginary boundaries between 
them. A breakwater gap illustrated in Fig.2 is a typical example of such a bound- 
ary. In the figure, waves fi(x,y) are incident to the imaginary boundary C on 
the x-axis. Note that fi(x,y) represents all the incident waves to C including 
those from the boundaries immediately beside C. 

If the boundary is either finite or semi-infinite, waves are partly reflected 
as they are transmitted across the boundary. In other words, two kinds of wave 
sources are in general to be distributed along a transmissive boundary. On one 
side of the boundary, the reflected waves /R(X, y) is superposed on the incident 
waves fi(x,y), whereas only transmitted waves fr(x,y) propagate on the other 
side. It is thus feasible for these two wave fields to coincide in terms of both the 
amplitude and its gradient along the boundary C: 

(fi + fR)\c=fT\0 (14) 
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d(fi + IR) 
dy dy 

(15) 

These conditions lead to the following integral equations for the source 
intensities 7/j and fx for reflected and transmitted waves respectively: 

2 jc 7H(0 • H$\k \x-i\)Ai = //(*, 0) - fj(x, 0) 

2jc7T(O-H£\k\x-t\)dt = fl(x,0) + fI(x,0) 

where 

/;M) i  f dfj(t,v) i 2 Jc      dr) »)=0 
H^(k\x-C\)d^ 

(16) 

(17) 

(18) 

(19) 

(20) 

For solution of the above equations, they are discretized by dividing the 
boundary into a number of segments. The problem is then ascribed to linear sys- 
tems of simultaneous equations, and the source intensities are obtained through 
matrix operations. Since the coefficient matrices of the systems are fixed for 
each boundary of this type regardless of wave conditions, inverse matrices once 
calculated can be repeatedly used throughout the computation. 

y 

fi 

c :> X 

Figure 2: Imaginary boundary. 
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In the actual computation, it is not necessary to solve both the above 
equations. After solving one of them for JR or 77-, we can easily evaluate the 
other from the following relationship: 

li(x) + -)R{X) + IT(X) = 0 (21) 

Even if incident waves with uniform amplitude are incident to the boundary, 
wave sources thus obtained are not uniform with high peaks at the boundary 
ends. These peaks represent the singularity of the boundary ends, reproducing 
fields of diffracted waves with good approximation. It is important to note here 
that the source intensity cannot necessarily be related to the local energy density 
of incident waves. 

Outline of the Numerical Model 

When the configuration of a sea area in question is complicated, the whole 
region for computation is divided into several convex polygonal subregions. A 
semi-infinite open sea area is regarded as one of the subregions. The other subre- 
gions are totally enclosed by boundaries, at least one of them being transmissive. 
All the boundaries are subdivided into a number of segments and the effect of 
each segment is represented by a wave source. A transmissive boundary serves 
as two boundaries at once for two subregions on its both sides, where two sources 
defined are for either reflected or transmitted waves depending on the subregion 
currently treated. 

The distribution of source intensities is calculated for each boundary. The 
flow of computation starts from the the subregion of wave incidence. It moves 
from one subregion to the next, and from one boundary to another in a subregion. 
Since the source intensities are interdependent, these boundary wise calculations 
over the whole region are repeated until all the intensities reach an equilibrium. 

It is somewhat difficult to formulate the condition of a partially transmis- 
sive boundary. Such a boundary may be reasonably regarded as a fully reflective 
boundary in evaluating reflected waves, and as a fully open boundary for trans- 
mitted waves. Prior to these calculations, the incident wave amplitudes are to 
be reduced by multiplying reflection or transmission coefficient. In this case, 
the source intensities for reflected and transmitted waves have to be memorized 
separately on both the sides of the boundary. 

The present method for wave field analysis can be applied even to a wa- 
ter area with arbitrary bathymetry by numerically obtaining unit solutions to 
replace the Hankel function. For the calculation of unit solutions, a relatively 
simple method for analyzing wave refraction may be employed, since the main 
part of wave diffraction is included in principle in the process of superposition 
of point source waves. Nonlinear wave deformation, however, can never be ana- 
lyzed by means of the Green-function approach as it is essentially based on the 
superposition of unit solutions. 
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Physical Model Experiments 

A series of experiments on waves in a harbor were conducted (Photo 1) to 
provide wave distribution data to examine performance of the numerical model 
described above. The model harbor configuration shown in Fig.3 and experi- 
mental conditions listed in Table 1 were determined along one of the model cases 
specified for trial simulation works by a subcommittee of the Coastal Engineering 
Conference, JSCE. The model was installed on a horizontal bed in a narrow wave 
basin. Gaps between the harbor and basin walls were filled by wave absorbing 
material to avoid the elevation of the mean water level. 

In some cases of the experiments, tetrapod mounds were arranged on the 
outer sea sides of the breakwaters, but all the other walls were vertical walls. As 
a matter of fact, arrangement of absorbing facility inside the harbor significantly 
narrows the harbor area in such a small-scale model. The reflection coefficient 
for each part of the model was separately estimated by applying Healy, Goda 
(1976) and Isaacson's (1991) methods, as summarized in Table 2. 

Wave heights were measured using servo-type gauge array at every 10cm 
grid point over the whole area near and inside the harbor. The measurements 
were repeated more than twice for each case, but no significant scattering was 
observed in the data obtained. The incident wave heights listed in Table 1 were 
obtained at the location of the harbor entrance prior to the model installation. 

Photo 1: Experimental setup. 
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Figure 3: Experimental setup. 
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Table 1: Experimental conditions. 

Case Water depth 
(cm) 

Period 
(s) 

Incident 
wave height 

(cm) 
Breakwaters 

1 
2 
3 

12.0 
12.0 
12.0 

0.70 
0.72 
0.70 

2.62 
2.06 
1.96 

with block mounds 
with block mounds 

without block mounds 

Table 2: Reflection coefficient. 

Measured value For computation 

Vertical wall 
Block mound 
Wave absorber 

0.95-1.00 
0.35-0.40 
0.30-0.35 

0.95 
0.40 
0.30 
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Comparison of Numerical Computations and Experiments 

In the numerical computations, the whole region was divided into four 
subregions. Two imaginary boundaries are shown in by dotted lines in Fig.3. 
Another boundary for wave incidence was assumed at 4m from the outer break- 
water tip, and further offshore area was treated as a semi-infinite region. All 
the boundaries were divided into segments with length of roughly 1/20 wave- 
length. The reflection coefficient values used are also shown in Table 2, and the 
boundarywise computations were repeated until the relative accuracy of 1/1000 
at maximum was attained. 

Figure 4 compares measured and calculated distributions of relative wave 
heights normalized with the incident wave height for Case-1 with a period of 
0.70s. The numerical model well simulates the field of standing waves formed in- 
side the harbor, although the wave heights calculated are somewhat smaller than 
those measured. The incident wave height may have been substantially increased 
involving reflected waves from the wave generator. In numerical analyses, waves 
in the innermost area of the harbor are apt to be underestimated as they are 
subject to multiple diffractions. This sort of tendency, however, is not apparent 
at all here. 

Figure 5 presents a similar comparison for Case-2 with a slightly longer 
period of 0.72s. It is seen that the wave period sensitively affect the wave field 
in such a system of multiple reflection, as is well simulated by the numerical 
model. These periods may be close to one of the resonant oscillation periods of 
the harbor water. 

The effects of the absorbing mounds on the breakwater fronts first appears 
on the wave height distribution outside the harbor. Then the change in wave 
heights along the harbor entrance indirectly influences the wave field inside the 
harbor. Figure 6 shows wave fields for Case-3, where the block mounds were 
eliminated. The computation again reasonably reproduces significant differences 
in the wave height distribution which is noticed through comparison with Fig.4 
for the Case-1 experiment. 

Concluding Remarks 

The Green-function method provides a powerful tool for analyzing wave 
diffraction and multiple reflection of coastal and harbor waves. The rational 
treatment of imaginary boundaries allows the arbitrary division of water area 
with a complicated configuration without deteriorating the accuracy of total 
computation. The present model is rather simple and minimizes empirical factors 
for its actual application. 

Since computer memory and computational labor required are not so large, 
even irregular waves can be treated so far as the linear superposition of con- 
stituent waves are acceptable. The model may be extended for arbitrary bathy- 
metry, but cannot contribute to analyses of nonlinear wave deformation. 
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