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Orthonormal Wavelet Analysis for 
Deep-Water Breaking Waves 
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ABSTRACT 
This study aims to develop a method using wavelet transform to detect 

wave breaking event from temporal water surface elevation data. Sudden surface 
jump associated with breaking wave is regarded as shock wave and shock wavelet 
spectrum is defined to detect the occurrence of the surface jump. The visual 
observation of breaking wave crest shows that this method can almost completely 
detect the occurrence of breaking wave in random wave trains. 

1. INTRODUCTION 
Wave breaking plays important roles in numerous aspects of horizontal and 

vertical momentum transfer from surface waves to current and mixing of surface 
layer. Since breaking waves are associated with steep and giant waves, wave 
breaking is very important phenomenon to estimate their upper limit and the 
occurrence probability of their wave height. Furthermore, breaking waves exert 
the strong wave induced force, which occasionally bring about impact pressure 
to structures. 

A great deal of effort has been made on direct observations of wave breaking 

in the ocean. One of them is direct visual observation of white caps to detect 

the breaking waves[Holthuijsen & Herbers(1986)], because the wave breaking 
is related to some sort of instability near the crests. Since they required much 
efforts, the visual observations are not adequate to ordinary routine observation. 
Another approach is to detect the breaking events in the time series of surface 
elevation, directly. Longuet-Higgins & Smith(1983) observed breaking waves 
by using a surface jump meter.    Recently, Su & Cartmill(1993) developed a 
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new detection method of breaking wave by a void fraction technique. These 
direct measurement methods are quite well but require special and sophisticated 
instrument, so that they are not also in general use. Weissman et a/.(1984) 
measured energy backscattering of the high frequency components due to wave 
breaking with the running Fourier spectrum method. Their detection method is 
empirical and has not objectivity, nevertheless their method need not any special 
instruments. They use the Fourier spectrum analysis that is generally effective 

to analyze an energy change, periodicity and a power law of data. However, it 

is not suitable to use unsteady process such as breaking. The reason why the 
Fourier analysis has not temporally or spatially local information on data is that 

its integral basis consists of periodic function. 
Recently, a new method of aperiodic and unsteady data analysis which 

has a locally confined integral basis, so-called 'wavelet analysis', is getting well 
known[for example, Meyer(f99f) and Farge(1992)]. Shen et a/.(I994) studied 
local energy characteristics of wind generated waves using a. continuous wavelet 
transform. Since the continuous wavelets, however, have overcomplete basis 
which causes formal relations among expansion coefficients, they are not suit- 

able to analyze local energy properties. Meyer(1989) studied and formulated 
the orthogonal analyzing wavelet system. This orthogonal wavelet transform is 
known as adequate analysis of the local energy characteristics of the data[Mori 
et a/.(1993)]. 

In this study we make a rational breaking wave detection scheme to indicate 
and to measure small jumps and discontinuities in surface elevation associated 
with breaking waves. Further, we check the validity of the method by experi- 
mental data and analyze the local energy properties of breaking wave using the 
orthonormal wavelet analysis. 

2. PRINCIPLE OF MEASUREMENT 

2.1 Orthonormal wavelet expansion 

Since the kernel functions of continuous wavelet transforms are not mutu- 
ally orthogonal, we have the redundancy of wavelet coefficients independent of 

data. The excellent mathematical formulation of orthogonal analyzing wavelet, 
multi-resolution analysis, was developed by Mallat(1989). Accordingly, in this 
paper, we employ the orthonormal wavelet expansion to analyze a water surface 
elevation. 

The orthogonal wavelet expansion of an arbitrary function T](t) is written 

OO       CO 

^) = EE^(<),   U,kez) (i; 
3=1k=l 
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in which ahk{j, k G Z, where Z is the set of all integers) is an expansion coef- 
ficient and '0j,/t(i) € L(R2) is a complete orthonormal set of wavelets generated 
from an analyzing wavelet, which is sometimes called mother wavelet, by discrete 
translations k and is corresponding to temporal position of time k/23, and dis- 
crete dilations j corresponds to frequency. It is conventional to take the discrete 
dilation as 

^k{t) = 2^{2H-k),    {j,k£Z) (2) 

with the orthonormality condition. From the orthogonality, the wavelets allow 

us to obtain the expansion coefficient a,lk in Eq.(l) by taking the inner.product 

of i](t) and «/>*.jt(t) as 

«*,* =  I" ri(Whk(t)dt. (3) 
J—CO 

There are typically three types of the orthonormal analyzing wavelets as 
Meyer's, Daubechies' and Battle-Lemaries's. To investigate the complete re- 
lation to the Fourier analysis for the purpose of this study, we follow Meyer's 
method(1989) which has the properties that; i) xp(t) is a real analytic function, 
ii) ip(t) and its derivatives of any order are rapidly decreasing functions, iii) 
the moments of any order are zero, and iv) the Fourier transform of ?/;(£) has a 
compact supported in the Fourier space. 

We define the mother function 4>(u>) of analyzing wa,velet that is an infinitely 
differentiable real function satisfying the following conditions, 

fco>) > 0, 1 

a)      4,(u) = }{-u), (4) 

4>(u>) is monotonically decreasing for  u> > 0,  J 

h)      #«) = 1    (H<27r/3), 1 

= 0   (H>4^/3), J 

c)    {<£(w)}2 + {<J>{LO - 2TT)}
2
 = 1    (2TT/3 < M < 4TT/3) . (6) 

The conditions of a) to c) do not uniquely determine <^(w), so that we can make 

arbitrary functions 4>(LO), if <j>(uj) satisfies the above conditions of a) to c). We 

employ here the mother function <j>(ui) defined as 

(7) 

where 

9^   =    h{u- 2TT/3) + h (4TT/3 - o7)~, ^ 

{ exp(-l/a)2),    (w>0) 
ft(w)   =    \ V > (9) 

£H = \A-H<?(- -w), 

/*(4TT/3 -W) 

h [w - 

{ exp 

- 2TT/3) + h (4TT/3 

,(-l/^2),   (w> 

(w < 

-W), 

0) 

0) 



I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I 

415 

0    20   40   60   80   100 120 
t 

(a) Meyer's analyzing wavelet ip(t) 

10 
(0 

15 20 

(b) The   Fourier   spectrum   i[>(io)   of 
Meyer's analyzing waveletV>(£) 

Figure 1: Illustrations of Meyer's analyzing wavelet. 

which is the same definition of Yamada & Ohkitani(1990). 
From the conditions of a) to c) and Eqs.(7) to (9), the Fourier coefficients 

of analyzing wavelet ij>(ui) are defined as 

fa) = e<-^2VW(w/2)}2 - i^H}2- (10) 

Note that <j)(to) has a compact support in {u> | 27r/3 < \ui\ < 7r/3}. Therefore, the 
wavelet coefficient is directly connected to the Fourier coefficient. 

The inverse Fourier transform of ?/>(u;) gives the following desired analyzing 

wavelet, 

^(t) = — /     ip(uj)etutduj. (11) 

Fig.l shows Meyer's analyzing wavelet and its Fourier spectrum. The analyzing 
wavelet is very regular. However, it is not very well localized in physical space 
but is supported compact in the Fourier space. The fast algorithm for wavelet 

transform with Meyer's analyzing wavelet using FFT algorithm is formulated 

by Yamada k Ohkitani(1991). 

2.2 Relation between the wavelet and the Fourier spectra 

It could be worth pointing out that the relations between the wavelets and 
the Fourier spectra. Meyer's analyzing wavelet has a useful property that is 
the compactness of the support in the Fourier space. Eq.(6) shows that »/>(u;) 

is only included in [-2J+37r/3, -2-'+17r/3] U [2J+17r/3, 2->
+3

7T/3]. Since the square 
of wavelet coefficient is corresponding to the energy, the direct relation between 
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Figure 2: Illustration of breaking wave passing a wave gauge 

the wavelet and the Fourier spectrum is expected as 
CO 

E3 = £ hvcl2 ~ w5(w)    (w ~ 2>'+2*/3) (12) 

where u> is angular frequency, 5(0;) the Fourier spectrum and Ej the wavelet 
spectrum. Particularly, the relationship of a power law of the energy spectrum 
between the wavelet and the Fourier spectrum can be expressed as 

2-i(p-i) . E3 

Eq.(13) gives the relation that u;" 
2-i(p-!) m the wavelet spectrum. 

• S(u) ~ to-p. (13) 

p in the Fourier spectrum is equivalent to 

2.3 Local and shock wavelet spectra 

The purpose of this study is to detect jumps in water surface elevation 
associated with breaking. We suppose that the sea surface elevation r)(t) is 
measured as a function of time t with a discrete sampling time At at a fixed 
horizontal position as illustrated in Fig.2. The wave passing the sensor will 

generally show a smooth rise dr/fdt. But, if a just breaking wave passes the 

sensor, we can expect a sudden jump of the surface elevation. The magnitude of 

the sudden jump is associated with the scale of breaker type: i.e. for a plunging 
breaker this is relatively large and it is smaller for spilling breaker. 

The Fourier series of shock wave represented as 

At, t < 0.5, 
y(t)=<   ,„   ,,         (0<*<i) (14) 

A{t-1),   t > 0.5, 

where A is the height of shock is easily given by ]C(—4/n) sin(nwt). Therefore, 
a power law of the energy spectrum of the breaking wave with the sudden jump 
is expected to u>~2 or 2_J. 

To investigate the local energy information among the scale, we define the 
local wavelet spectrum LJ\J for the scale j > js as 

^,f =El«i,*|a.    (0<fc'<2^*) (15) 
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Figure 3: The local wavelet spectrum Lj^i of shock wave given by Eq.(14). 

where, js is minimum dilation mode of the local wavelet spectrum which de- 

termine the resolution and ]T denotes the special summation over k satisfying: 

{k/21' < k'/23 < (k + l)/2Js). The local wavelet spectrum Lhk' can analyze 

characteristics of microscopic or local energy properties for data. Besides, we 

introduce the shock wavelet spectrum to detect the surface jump of the shock 

wave described by Eq.(14). The shock wavelet spectrum M,hy is defined by 

following as 

M3:k,=2'xJ2Kk\2-    (0<fc'<2JS) (16) 
v 

Since power law of shock wave is 2~3 for the wavelet spectrum, that is cor- 

responding to power law of uj~2 for the Fourier spectrum, the shock wavelet 

spectrum detects the shock as a constant power whenever jumps observed in the 

surface elevation. 

Fig.3 shows the local wavelet spectrum(js=6) for the shock wave given 

by Eq.(14). The number of points to discretize the shock wave is 512. The 

local wavelet spectrum shows the energy distribution of time-frequency space 

and indicates existence of the high crest corresponding the time of shock at 

i=0.5. This result implies the effectiveness of the local wavelet spectrum for 

local energy analysis. To make clear the local energy properties of the shock 

wave, the shock wavelet spectrum(j.s=6) for shock wave of Eq.(14) is shown in 

Fig.4. We can easily detect the shock from the characteristic structures of shock 

wavelet spectrum Mhy both of the occurrence time and their magnitudes. 

To say nothing ol the accuracy of detection of shock depend on discretization 

oi data.  The relation sampling frequency At arid the local power law is shown 
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Figure 4: The shock wavelet spectrum Mhy of shock wave given by Eq.(14). 
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Figure 5: Comparison of the local power law of shock wave between the numer- 
ical and analytical one. 
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Figure 6: Location of wave gages. 
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Figure 7: Spatial variation of the wave height statistics. 

in Fig.5, where H is the height of the shock wave and T is the wave period. The 

value of js is set equal to jmax—2 and the local power law of the wavelet spectra 

are calculating the scales between the j3 and js + 1. The error of estimating of 

power law is 2.7% for JV=256 to 4096, 4% for 7V=128, 25% for 7V=64 and 30% 

for N—32. We conclude that the number of point TV >64 or 128 per one wave is 

required to accurate estimation the jump from the data. Note that the accuracy 

of estimation is independent of the amplitude of the shock wave. 

3. EXPERIMENTS 

3.1 Experimental condition 

The experiments were conducted in the glass channel installed at Techni- 

cal Research & Development Institute of Nishimatsu construction Co.,Ltd. The 

channel is 65m long, lm wide, 2m high and was filled to a depth of 0.98m. 

Waves were generated by computer-controlled piston type wave paddle. The 

initial spectra of the surface elevations are composed of the Wallop type spectra 

with the band width m=10 and the peak frequency /p=lHz, giving a wavenum- 

ber fcp=4.072m_1 and characteristic water depth fcpfe=3.99, so that the waves 
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Figure 8: Water surface elevations of the random wave trains. 

were deep water waves. Water surface displacements were measured with twelve 
capacitance type wave gages as shown in Fig.6. The measurements were per- 
formed at a sampling frequency of 100Hz for over lOOsec. At the same, spatial 
surface profiles were recorded by video camera to examine the breaking event. 

Figure 7 shows the spatial variation of Hmax and #1/3. Although, the value 
of Hmax is fluctuated, the spatial variation of H1/3 shows that there is some 

energy dissipation due to the wave breaking. In the following, we only focus the 

surface elevations at P5. 

3.2 Local energy characteristics of nonlinear wave 

The values of skewness and kurtosis at P5 are 0.245 and 3.473, so that the 
waves are found to have weekly nonlinear characteristics. For comparison with 
the experimental data, we calculate artificial random phase wave data(linear 
waves) which is obtained by the inverse Fourier transform of the original sur- 
face elevations of P5 after randomizing their phases uniformly over[0,27r] with 
their amplitudes unchanged. The surface elevations of experimental data and 

simulated wave with randomized wave are shown in Fig.8, respectively. The two 
arrows in the Figure indicate the time when breaking event just occurs. 

Weissman et a/.(1984) developed the detection method of breaking wa,ves 

based on the singularities of the high frequencies, which is the intrinsic frequency 
of gravity-capillary waves, by a trial and error method with the running Fourier 
transform. The wave profile band-passed of high frequencies(10-12Hz) shown in 
Fig.8(a) is illustrated in Fig.9. The bursts of energy in the high frequency com- 
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Figure 9: Water surface profile of band-pass filtered wave with the high frequency 
components(10-12Hz) of Fig.8(a). 
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Figure    iO:        Temporal    distribution    of    the    square    value    of    wavelet 
coefficient, |a^,t|2, of the experimental wave 

ponents are indicative of breaking events. He detected wave breaking from burst 

of the temporal energy distributions in this frequency band. Fig. 10 shows the 

square value of wavelet coefficients a.hk at the scale j = 10 which is correspond- 
ing to about 8Hz. The distributions of square values of ah/,: clearly indicate 
the singularities of the high frequencies, which are corresponding to the time 
of breaking waves, in comparison with the result of the Fourier band filtered 
method(Fig.9). The same empirical method to detect the breaking waves can 
be applied by the wavelet analysis and will be given better result rather than the 
running Fourier transform, but let us then considered here the energy structure 
and energy cascade process among lower and higher frequency components. 

It was already shown that the local wavelet spectrum is effective to ana- 
lyze the temporal energy structures in previous section. Fig. 11 shows the local 

wavelet spectra with js~1 for the experimental wave and the simulated wave, 
respectively. The experimental data indicate that characteristic structure of 
energy distribution is shown running in parallel with the j-axis. Particularly, 
some big crests can be observed at the large scale into small scale. Although the 
Fourier spectrum is the same as experimental wave, there is no pattern or struc- 
ture in the local wavelet spectrum as the experimental wave in the simulated 
wave(b) and they seem to distributing uniformly. This implies that the high 
frequency components of experimental wave, nonlinear wave, are not constant 
in amplitude and that there are sharp peaks sporadically distributed along the 

time series. In other words, the high frequency components are intermittent in 
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Figure 11: Local wavelet spectra for the measured and simulated waves. 

the nonlinear wave. 

The sharp peaks and structures in wavelet space(j, k) are related with non- 
linear wave-wave interaction but we may leave the details to further studies. 

3.3 Detection of breaking wave 

The nonlinear waves have the local energy characteristics as already shown 
in Fig.ll. This will lead us further into a consideration of detection of breaking 
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Figure 12: Shock wavelet spectra for the measured and simulated wa,ve. 

wave by shock wavelet spectra. The shock wavelet spectra of experimental wave 
and simulated wave are shown in Fig.12. The sharp peaks are shown intermit- 
tently in the experimental wave, corresponding to the time when breaking wave 
passes. Therefore, we need some detector function to judge whether they break 

or not. Thus, we define the detector function a; is calculated as 

M. js-\-m,ki 

AT, i     h Js>Kt 

(17) 

where subscript i denotes temporal position (0  <  k'  < 27a), js is resolution 
of scale parameters and m is distance between the js.   The illustration of the 
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Figure 13: Illustration of wavelet space and relationship with parameters 

Table 1: Accuracy of the present detection method 

a\n i.=7 i.=7 i.=8 J>8 
m=l ra=2 771=1 m=2 

0.9 (-1) 2 1 3 2 
0.8 3 1 4 2 
0.6 4 1 5 2 
0.5 (-2) 5 1 5 3 

wavelet space and the relationship with parameter is shown in Fig.13. The 
experimental result of detection of the method for the experimental wave is 
shown Table l(js=7 is corresponding peak frequency of the spectrum). The 
actual number of breaking waves is two, therefore, j.s=8, m—2, a;=0.9 and 0.8, 
0.6 and js=l, m=l, ai=0.9 gives quite nice value when we selected. The fine 
resolution scale of js=8 accurately detect the breaking waves rather than js = 7 
and the m=2 gives more accurate results than m—1. The reason for this result 

is sampling frequency of shock and fluctuation of the local power law due to the 
external noise of data. 

It could be concluded that the present method can detect the breaking wave 
from the temporal water surface elevation data, if the adequate parameters a 

and m are selected as <Zj >0.8 and m—2. 
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4. CONCLUSION 
We applied the orthonormal wavelet expansion to the water surface eleva- 

tions of random waves and studied their local characteristics. It is found that 

the sudden surface jumps associated with the breaking waves were well reflected 

in the shock wavelet spectra. Thus, we developed the rational detection method 

of breaking wave as following procedure: 

l.The wavelet coefficients ahk of the surface elevations are calculated Eq.(3). 

2.The appropriate resolution with the scale js is selected. 

3.The shock wavelet spectra are calculated with Eq.(16). 

4.The local power law of the surface elevations are calculated Eq.(17). 

5.Breaking waves are expected to have the local power a law 2~J of the 

wavelet spectrum 

Furthermore, the sudden surface jumps can be well detected, if they are de- 

scribed by using sufficiently many discretized points. We demonstrated the 

validity of the method by comparing with the experimental data. Note that this 

method can be applied to not only deep water waves but also shallow water. 
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