
CHAPTER 29 

Spectral Wave-Current Bottom Boundary Layer Flows 

Ole Secher Madsen1 

Abstract 

Based on the linearized governing equations, a bottom roughness spec- 
ified by the equivalent Nikuradse sand grain roughness, fcjv, and a time- 
invariant eddy viscosity analogous to that of Grant and Madsen (1979 and 
1986) the solution is obtained for combined wave-current turbulent bottom 
boundary layer flows with the wave motion specified by its near-bottom 
orbital velocity directional spectrum. The solution depends on an a priori 
unknown shear velocity, u*r, used to scale the eddy viscosity inside the 
wave boundary layer. Closure is achieved by requiring the spectral wave- 
current model to reduce to the Grant-Madsen model in the limit of simple 
periodic plane waves. To facilitate application of the spectral wave-current 
model it is used to define the characteristics (near-bottom orbital velocity 
amplitude, U(,r, radian frequency, uir, and direction of propagation, 4>wr) 
of a representative periodic wave which, in the context of combined wave- 
current bottom boundary layer flows, is equivalent to the wave specified by 
its directional spectrum. Pertinent formulas needed for application of the 
model are derived and their use is illustrated by outlining efficient compu- 
tational procedures for the solution of wave-current interaction for typical 
specifications of the current. 

Introduction 

Over the past couple of decades several theoretical models for turbulent 
bottom boundary layers associated with combined wave-current flows have 
been proposed. In view of the vastly different levels of sophistication with 
which these different models represent turbulence, their end result, most 
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notably their predicted effect of the presence of waves on the current, is 
surprisingly similar. Thus, in the absence of solid experimental evidence as 
to which of the many models is truly the best, choosing a particular model 
for applications becomes a matter of personal preference and convenience. 
However, since all existing wave-current interaction models have been de- 
rived for a wave motion corresponding to a simple periodic plane progressive 
wave, one additional choice - the choice of simple periodic wave character- 
istics to represent a wave motion which more realistically is described by 
its directional spectrum - must be made prior to model applications. 

The objective of this study is therefore to derive a simple theoretical 
model for turbulent wave-current bottom boundary layer flows for a wave 
motion described by its directional spectrum and to use this model to de- 
termine the characteristics of the periodic wave which, in the context of 
wave-current interaction, is equivalent to the directional sea. 

Theoretical Model 

The theoretical model for spectral wave-current boundary layer flows 
is based on the linearized boundary layer equation which, in standard no- 
tation, reads 

<9u 1 dp       d 

dt p dxi     dz 

du 
dz (1) 

in which the turbulent eddy viscosity, vt , is assumed to be scaled by an a 
priori unknown shear velocity, u*r, which inside the wave boundary layer, 
z < Swc, reflects the combined wave-current flow and outside the wave 
boundary layer is a function of only the average, i.e. the current, shear 
velocity, M*C. To keep the analysis relatively simple and because the uni- 
versally made assumption of a single roughness scale, the equivalent Niku- 
radse sand grain roughness, jfcjv, for currents and waves alone as well as for 
combined wave-current flows has been experimentally validated (Mathisen 
and Madsen, 1993) only for this model, we adopt the Grant-Madsen (1979 
and 1986) eddy viscosity 

v = f Ku*rz    for    z < 6WC ,_ 
4      \ KU*CZ    for    z > 8WC ^ ' 

Assuming u*r and therefore vt to be time-invariant, resolving velocity 
and pressure into their mean and time-varying components, i.e. 

u = u + u = uc + uw    ;    p = p + p = p + pb (3) 
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and introducing these expressions in the governing equation, two separate 
equations are obtained. One for the wave motion 

d(uw - ub) =  d_ 
dt ~ dz 

d(uw - ub) 
vt — dz (4) 

in which the relationship between pb and the near-bottom velocity Ub, 
predicted by potential theory, has been invoked; and another equation for 
the current 

vt~Q^ = Tc/P = vZc{cos<j>c,sm(/>c} (5) 

in which the law-of-the-wall arguments have been used, and <f>c denotes the 
current angle with the x-axis. 

Wave Solution 

For the wave solution only the eddy viscosity formulation assumed 
for z < 6WC is pertinent. Hence, the wave portion of the wave-current 
problem is completely analogous to the pure wave boundary layer problem 
discussed and solved by Madsen et al. (1988) for a wave motion described 
by its directional spectrum, i.e. the solution to (4) may be written as a 
sum of wave components, each being the real part of 

Uv 

ker2VCr^ + ikei2VC^ 

ker2yCno + ikei2vCn 
Ub„me^* (6) 

in which the velocity is related to the directional near-bottom orbital ve- 
locity spectrum, SUb(u},9), through, 

Ub«m = \/2SUb(u>n,9m)d9duj{cosOm,sm0m} (7) 

ker and kei denote the zeroth order Kelvin functions and 

Cn = ZOJn/(kll*r) (8) 

with Cno denoting the value of (n at z = z0 — kjv/30 where fcjv is the 
equivalent Nikuradse sand grain roughness of the bottom. 

Current Solution 

The solution for the current, obtained from (5) and (2), is for z < Swc 
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-In—{cos (f>c, sin <f>c} 
U/^ffii ZQ 

(9) 

and for z > Su 

uc = —-In—{cos<^>c,sin0c} 
K %oa 

(10) 

in which zoa - the apparent bottom roughness experienced by the current 
in presence of waves - is obtained by matching the currrent velocities at 
Z — Outc,   t" 6. 

£n VWC 

z„ (11) 

Closure 

In the preceeding analysis we have formally obtained the solution for 
the near-bottom turbulent flow associated with a wave motion described 
by its directional frequency spectrum and a superimposed steady current. 
However, the solution can be evaluated only when the value of the rep- 
resentative wave-current shear velocity, u*r, is known. To determine this 
unknow, i.e. to close the problem, we obtain the bottom shear stress for 
each wave component from 

Twnm — pK,U*rZ 
duv 

pKU* 

dz 

9(2 VQ u=u 

pK1l*r\J C,no ._— ^—      U\inrn& 
ke^y/uo  + ikei2VU 

(12) 

in which "prime" denotes the derivative of the zeroth order Kelvin function 
with respect to its argument, and Ubnm is given by (7). 

This equation may alternatively be interpreted as an expression for the 
directional spectrum of the wave-associated bottom shear stress 

sTm(u;,e) = K2(uJ)sUb(Lo,e) (13) 
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-ker'2-v^o - ikei2^0 

is a function of w since 

ker2VC^   + ikei2^ 
(14) 

Prom (13) we may obtain the representative amplitude of the bottom 
shear stress of a simple harmonic wave with the same variance as the spec- 
tral representation, i.e. the root-mean-square amplitude, 

r2 
wr 

PP /»00   /•27T 

2 // STa (w, O)d0dw = /    /     #3(«0 [25Ub (w, 0)] d6>dw        (16) 

with a direction given by 

tan^- JfSTw(w,e)coB9dwd0 {    ' 

In principle (16) and (17) may be evaluated if the bottom roughness, 
fcjv, and the near-bottom orbital velocity spectrum, SUb(ui,8), are known. 
This would lead to a representative wave-associated bottom shear stress 
amplitude vector 

Twr = rwr {cos 0wr, sin 9wr} (18) 

which depends on the unknown representative wave-current shear velocity, 

Final closure is obtained by requiring the spectral wave-current solu- 
tion to reduce to that of Grant and Madsen (1986) in the limit of simple 
periodic waves, i.e. 

,2 1, 
u^ - - r, 

P 
wr •7c | (19) 

The bottom shear stress in (12) is evaluated at z = z0 — hx/SO rather 
than by taking the limit z —•> 0, which was used in Madsen et al. (1988). 
For small values of £„ which, by (15), is seen to correspond to small values of 
the bottom roughness, this difference is of negligible importance. However, 
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for larger roughness values and hence larger values of (0 this difference has 
important implications that will be discussed in Appendix A. 

The Representative Periodic Wave 

Actual application of the theoretical spectral wave-current model as 
presented in the preceeding section would be extremely cumbersome, par- 
ticularly since the evaluation of the integrals in (16) and (17) presumes u*r 

to be known. For this reason a further simplification is achieved by intro- 
ducing the concept of a representative periodic wave which, in the context of 
wave-current interaction, is equivalent to the spectral wave representation. 

This representative periodic wave is characterized by its near-bottom 
orbital velocity amplitude, ut,r, radian frequency, u>r, and direction of prop- 
agation, 4>wr. To obtain the representative wave characteristics we start by 
writing (16) in the form 

/>2TT 

TZ   — 2 Twr ~ z 

Jo 

/   K2
(U) /   sUb{w,e)de<hj 

Jo Jo 

dK2 f'Z7T 

(w - uv) + • • •    /     2SUb{io,6)ddduj   (20) 
Jo 

K2(ur) + 
dco 

Neglecting higher order terms in the expansion of the transfer function 
K2(tu) around ui = uir, the expression given by (20) reduces to that for a 
simple periodic wave 

' wr — ' wm K(u>r)ui,r (21) 

in which rwm is the maximum bottom shear stress of the periodic wave 
with the representative wave orbital velocity amplitude given by 

ubr I Jf SUb(u;,0)du (22) 

and the representative wave radian frequency taken as 

JujSUb(u},0)dwdO 
L0r j sUb{w,e)dwde (23) 

Finally, the direction of propagation of the representative periodic wave 
may be obtained from (17) as 
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^V•- jSvh{u,t9)cOBe(kjdB W 

when it is assumed either that JK"(W) is sufficiently accurately represen- 
tated by K(uir) or that the directional spreading function for SUh(ui,9) is 
independent of radian frequency. 

For completeness it is noted that the expression for uir, (23), differs 
from that obtained by Madsen et al. (1988). Since Madsen et al. (1988) 
based their representative radian frequency on rather intuitive arguments 
whereas (23) is based on more rigorous considerations the expression given 
here should be considered the correct definition of wr. The effects of small 
variations of u)r on the predicted wave-current interaction are, however, 
insignificant compared to other uncertainties so this point is made primarily 
to avoid confusion. 

Application of Spectral Wave-Current Model 

Pertinent Formulas 

To illustrate the application of the spectral wave-current model we 
assume that the current is specified and that the characteristics of the 
representative periodic wave are known. 

We first define the angle between current direction, (f)c, and direction 
of wave propagation, </>wr, as 

4>cw ~(j>c~ 4>wr (25) 

With this definition, the representative shear velocity is obtained from (19) 
as 

u2   =- Twr{l,0} + Tc{cos(/>CUJ,sin0CT„} Cnu*wm (26) 

in which u„wm = yjTwr/p is the shear velocity based on the maximum 
representative wave-associated shear stress, 

CM = (l + 2/i|coS(/>cu,|+/x2)1/2 (27) 

and 

M = Tc/Twr =        (28) 
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expresses the ratio of current and wave bottom shear stresses; a ratio which 
generally is much smaller than unity and therefore results in values of CM, 
given by (27) , close to unity. 

To obtain the maximum wave shear stress, we introduce the wave 
friction factor concept in the presence of a current through the definition 

1 
Jwcubr (29) 

Introducing (14) and (15), with u> = wr, in (21) and using (29) with 
(26) to replace shear stresses and shear velocities lead to an implicit equa- 
tion for the wave friction factor in the presence of a current 

Iwcj^fi — KV^Sr 
—ker'2\/Cro ~ ikei'2-^/Cr 
ker2i/(^    + «kei2i/Cr 

(30) 

in which 

kNu)r (kNL)r)/(ubrC,j,) 

30«u.r      (30K/y/2)y/fwc/Cr 
(31) 

Written in this form clearly brings out the feature that the wave friction 
factor, in the presence of a current, is a function of the relative magnitude 
of the current shear stress, expressed through the factor C^ defined by (27) 
and (28), and the bottom roughness, (CA1U()r/wr)/fc^ = C^Abr/k^, relative 
to the representative wave near-bottom orbital excursion amplitude, Af,r = 
Ubrl^rt modified by the factor CM to account for the presence of a current. 
It is particularly interesting to note that (30) and (31) reduce to the pure 
wave case in the absence of any current since then CM = 1. Thus, (30) and 
(31) may be regarded as the generalized wave friction factor relationship 
valid both in the presence and absence of a current. 

To evaluate the wave friction factor as a function of relative rough- 
ness, series expansions for zeroth order Kelvin functions and their deriva- 
tives, given in Abramowitz and Stegun (1972, Chapter 9), are used to 
obtain y/fwc/Cfi. from (30) with von Karman's constant K = 0.4 for a cho- 
sen value of Cro. Once yf^JC^, is obtained from (30) the corresponding 
relative roughness, C^Ubr/(<^rkN), is obtained from (31). The resulting re- 
lationships between wave friction factor and relative roughness is shown in 
Figure 1, and may be approximated by the following explicit formulas 
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0.4 

C^ubr/{kNwr) 

Figure 1: Generalized Friction Factor Diagram for Waves in the Presence 
of a Current. Wave Friction Factor, fwc, (dashed line), Wave Energy Dis- 
sipation Factor, fer (full line), for the Representative Periodic Wave. 

= C„exvl7.02(^- fwc = L/'/i exp 

for 

-0.078 

8.82 

0.2 < C^ubr/{kNwr) < 102; 

(32) 

and 

/18c = C7Mexp^5.6l(^ 
-0.109 

for 

-7.30 

102 < C^ubr/{kNujr) < 104. 

(33) 

These expressions are accurate to within about 1% for the indicated 
ranges of relative roughness and are far superior to the approximate implicit 
friction factor equations that may be drived from (30) and (31) under the 
assumption of small values (ro, i.e. large values of (^^/(fcjvov). Thus the 
wave-current friction factor equation given e.g. by Madsen et al. (1988) is 
not only far more cumbersome to use but it is also less accurate than (33)! 
The author is indebted to Prof. Stephen R. McLean (U.C. Santa Barbara, 
personal communication) for pointing out the advantages of friction factor 
formulas of this type (originally suggested by Swart, 1974). 
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The Wave Boundary Layer Thickness, 6WC 

The matching level for the current profile, here referred to as the wave 
boundary layer thickness and denoted by 6WC, has up to this point not been 
defined in quantitative terms. 

Considerations of Swc as the level required for the wave orbital velocity 
to approach its free stream value within a certain percentage were used by 
Grant and Madsen (1979 and 1986) to arrive at 

Swc = a—— (34) 

with a-values in the range of 1 to 2. Madsen and Wikramanayake (1991) 
concluded from a comparison of current velocity profiles predicted by the 
Grant-Madsen model with limited experimental result as well as predictions 
afforded by more sophisticated turbulence closure models that reasonable 
agreement was obtained for a-values in the range of 1 to 1.5. 

If therefore one accepts (34) as the appropriate expression for 6WC one 
is faced with the problem of predicting a wave boundary layer thickness 
smaller than the equivalent Nikuradse sand grain roughness, fcjv, when the 
roughness is large. This apparent inconsistency of the wave-current theory 
may be removed by requiring that Swc should be at least some fraction of 
the Nikuradse roughness, UN- Choosing, somewhat arbitrarily, 8WC > k^ 
for the current profile matching level leads to a limiting value of (34) given 
by 

-^n = 30£ro < a (35) 

in which (31) was used. 

Choosing, in honor of Bill Grant, a = 2 use of (35) in (30) and sub- 
sequent use of (31) leads to a limiting value of the relative roughness for 
which 6WC is determined from (34), and results in the following definition: 

A     _ ( 2K,u*r/ujr    for    C^ubr/(kNujr) > 8 ,    . 
°WC~\kN for     CpUbr/ikNWr) < 8 W 

Whereas there is evidence in support of (34) for small relative rough- 
ness, the "prediction" of 6WC ~ kN should be regarded as tentative (at best). 
Since large roughness values, for naturally occuring wave-current flows over 
a movable bed, generally are associated with ripples and since fc^r ~ 4x 
(ripple height) for two-dimensional equilibrium-range ripples, e.g.   Grant 
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and Madsen (1982), the prediction from (36) of Swc = 4x (physical scale of 
two-dimensional roughness features) does, however, appear reasonable. 

Application 

Assuming the bottom roughness (fcjv = 30zo) and the representative 
periodic wave characteristics( uj,r, cjr, and <pwr) known the method of so- 
lution depends on the specification of the current. 

Current Specified by v%c and </>c. This specification may physically arise 
in near-shore waters with a strong wind-driven shore-parallel velocity. In 
this situation the bottom shear stress may be approximated by the shore- 
parallel wind stress. 

Obtaining <pcw from (25), solution is started by initially taking \i = 
£t(o) = 0 in (28), to obtain CM = C{°] = 1 from (27). With CM = CJ°] 

and known wave and bottom roughness conditions fwc = fw°c is obtained 
from (32) or (33), whichever is appropriate. Now, iwl and (29) provide a 
first estimate of ui°J,m, so that (28) may be revisited to obtain an improved 
estimate of \x= pM\ With p, = fi^ the procedure is repeated and iteration 
is terminated when fwc      = fwc within 1%. 

Convergence is generally achieved within a few iterations and from 
knowledge of utc and utwm the represenatative shear velocity, u*r, is ob- 
tained from (26). The current velocity profile may now be evaluated from 
(9) and (10) with 6WC specified by (36) and the apparent bottom roughness, 
zoa, may be determined from (11). 

Current Specified by 4>c and uc(zr) = ucr. This specification of the 
current corresponds to a current velocity and direction measured at a given 
elevation, zr, above the bottom. (It is assumed that zr > 8WC.) 

For this specification of the current the solution procedure is somewhat 
more cumbersome. Again, after use of (25) the iterations are started by 
H = fj,(°) = 0 in (28) and CM = c£o) = 1 from (27) resulting in fwc = 0 

from (32) or (33) and then M*TOm = ufj,m from (29) followed by u*r = ufj 
from (26). Since it is assumed that zr > Swc, the specified current velocity 
is given by (10), which with the aid of (11) may be written as a quadratic 
equation in the current shear velocity, u»c, 

Uc(zr) = ucr = ^£n^- + -^In^ (37) 

Since 8WC is given by (36) this equation, with K = 0.4, z0 — fcjv/30 and 
the latest value of «*r may be solved to give 
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_ u*r £n(zr/6wc) I 4n£n(8wc/z0)  ucr\ 
2   ln(8wc/z0) I V        (£n(zr/6wc))

2 urr 

For the initial iteration u*r = u°r' in (36) and (38) yields the first approx- 
imation for the current shear velocity u*c = ufj. With u*c = ufj and 
u*wm = u*°J,m the value of /j, may be updated by use of (28) and the proce- 
dure may be repeated until convergence is achieved (/i" = fwc within 
1%). Again, convergence is generally achieved after a couple of iterations 
and the current velocity profile is determined from (9) and (10) with the 
apparent bottom roughness obtained from (11). 

Discussion and Conclusions 

Based on the linearized governing equations and adopting a simple 
time-invariant eddy viscosity a solution for combined wave-current turbu- 
lent bottom boundary layer flows was obtained for a wave motion specified 
by its near-bottom orbital velocity directional spectrum, SUb(uj, 9). Closure 
was achieved by requiring the model to reduce the Grant-Madsen model in 
the limit of simple periodic plane waves. The spectral wave-current in- 
teraction model was used to determine the characteristics of a representa- 
tive periodic wave which, in the context of combined wave-current bottom 
boundary layer flows, was equivalent to the directional sea. This repre- 
sentative periodic wave is specified by Ubr, its near-bottom orbital velocity 
amplitude, 

Ubr fl' 2SUb(uj,e)dud0, 

i. e. the root-mean-square bottom velocity amplitude of the directional sea; 
u>r, its radian frequency, 

__ JwSUb(u),0)cL>d0 
Wr"   JSUb(co,e)dojd0 ' 

i.e.   the mean frequency of the directional sea; and <pwr, its direction of 
propagation, 

_ ff wSUb(u>, 6) sin 6dud0 
4>wr - arctan-p-^—^-^-, 

i. e. the mean direction of the directional sea. 



396 COASTAL ENGINEERING 1994 

Although based on the simple Grant-Madsen eddy viscosity formula- 
tion it is believed that the representative periodic wave characteristics de- 
termined here can be adopted with any wave-current interaction model to 
determine the effect of a directional sea on the near-bottom flow associated 
with a superimposed current. This transferability of the present results 
to any model that is based on a time-invariant eddy viscosity is assured 
on theoretical grounds and is not likely to seriously affect the practical 
significance of results obtained from elaborate numerical turbulent-closure 
models. 

The most severe limitation of the spectral wave-current model's abil- 
ity to predict current velocity profiles in the presence of waves is associated 
with the uncertainty in the determination of matching level for the current 
profile segments, i.e. the wave boundary layer thickness, Swc, for large val- 
ues of the equivalent bottom roughness. This limitation is not unique to 
the class of models presented here. It is inherent in all theoretical formu- 
lations of turbulent boundary layer flows that apply the turbulent no-slip 
condition at z = z0, and may, for large roughness, lead to the nonsensical 
result of a boundary layer thickness less than the physical scale of bottom 
roughness elements. Clearly, when 6WC is not large relative to the physical 
scale of the bottom roughness, assuming a horizontally uniform flow is a 
poor assumption. This issue is particularly important in the context of 
wave-current interaction in the coastal environment where wave-generated 
bottom bedforms (ripples) create a large bottom roughness. Theoretical 
and especially experimental studies are required to shed some light on this 
problem whose existence is acknowledged here by tentatively suggesting 
0WC > K]\f. 

In retrospect these characteristics of the representative periodic wave 
can hardly be considered surprising. The most important wave character- 
istic in terms of wave-current interaction is the magnitude of the bottom 
orbital velocity since this has the greatest effect on the bottom shear stress 
which, in turn, dominates the turbulence intensity within the wave bound- 
ary layer. Since the wave-associated bottom shear stress is proportional 
to the square of the near-bottom orbital velocity amplitude, u\m, with the 
"constant" of proportionality, the wave friction factor, being "essentially 
constant" it follows directly that the near-bottom velocity of a representa- 
tive periodic wave should be (u^m)1 > i-e. exactly the form of ut>r that 
we obtained through laborious, albeit theoretically rigorous, considerations. 
Despite the "intuitively obvious" nature of our rigorously derived expression 
for the representative periodic wave's bottom orbital velocity amplitude it 
is interesting to note that several investigators have chosen to represent 
a random sea by a "significant" bottom velocity amplitude, i.e. greater 
than our Ubr by a factor of \/2. The theoretically rigorous derivation of the 
representative periodic wave characteristics presented here therefore firmly 
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establishes the significance of the root-mean-square near-bottom wave or- 
bital velocity (and the insignificance of the "significant" velocity) in the 
context of combined wave-current bottom boundary layer flows. 
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Appendix A: Spectral Wave Energy Dissipation 

As mentioned earlier the effect of evaluating the bottom shear stress 
at z = z0(( = Cro) rather than by taking the limit z —> 0(£ —• 0) has pro- 
nounced effects for larger roughness values. Thus the wave friction factors 
predicted by (32) are significantly lower than those obtained if the limit 
z —> 0 were used to define the bottom shear stress. Furthermore, the phase 
difference, ipT, between bottom shear stress and free stream wave orbital 
velocity, which is important for the computation of wave energy dissipation 
in the wave bottom boundary layer, is extremely sensitive to the choice of 
definition , z = z0 or z —> 0, used to evaluate the bottom shear stress for 
large values of the bottom roughness. 

The phase difference, <pT, is given by the argument of the complex 
fraction of Kelvin functions and their derivatives in (12), (14) and (30). 
The phase difference, <pTr, for the representative periodic wave, obtained 
from (30), may be approximated by the explicit relationship 

4>°r = 33 - 6.0 log10 ^^    for    0.2 < Cu«6r/(fcjVwP) < 103        (39) 
KffU}r 

which is accurate within 1° for the range indicated. 

For each wave component the rate of energy dissipation in the bottom 
boundary layer, Dnm, is obtained from Kajiura (1968) with bottom shear 
stress given by (12) and free stream velocity by (6), evaluated for (n —» oo. 
The resulting formula is written in compact form by using (26) and (29) to 
express u*r and generalizing (30) and (39) for arbitrary choice of ui. The 
end result is 

J-'nm — Twnm ' luwnmj(„-+ oo —   . Pv Jwcy Jwc,n COS <pTnU5rU^nrri       (4UJ 

in which fwc,n an(i <Prn are obtained from (32) or (33) and (39), respectively, 
with tor replaced by wn and Ubnm is given by (7). 

Madsen et al. (1988) used the z —> 0 definition to obtain the wave 
friction factor and neglected the influence of the phase difference, ipT, in the 
evaluation of the energy dissipation rate. Strictly speaking this limits the 
applicability of their results to the range of relative roughness associated 
with (33). For this range fwc,n and cos(fTn depend weakly on u)n and 
may be replaced by their values for uin — UJT. In this way (40) becomes 
equivalent to Eq. (26) in Madsen et al. (1988) if their "/wr" is replaced 
by fer — "the representative wave energy dissipation factor" = fwccos(pTr. 
For small bottom roughness cos (prr ~ 1 and fer — fwc makes (40) identical 
to Eq. (26) of Madsen et al. However, as seen in Figure 1, fer may be 
significantly different from fwc for large bottom roughness. 




