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Time-dependent mild-slope equations 
for random waves 

Masahiko Isobe1 

Abstract 

Linear and nonlinear governing equations are derived to calculate the time 
evolution of random waves subject to refraction and diffraction. 

In the lineal' theory, the frequency-dependent coefficients in the mild-slope equa- 
tion (Berkhoff, f 972) are approximated by a rational function of the frequency, and 
then a time-dependent and frequency-independent expression of the mild-slope 
equation is derived. The resulting equation is applicable to simulate the transfor- 
mation of random waves in the nearshore zone. Results of numerical calculation 
agree well with experimental results for random wave shoaling in the offshore zone. 

A set of nonlinear governing equations is also derived to simulate the nonlinear 
wave transformation. The velocity potential for the wave motion is expressed as 
a series in terms of a given set of vertical distribution functions. Then, the La- 
grangian is integrated vertically and the variational principle is applied to yield 
a. set of nonlinear, time-dependent, two-dimensional governing equations for the 
nonlinear random wave tranformation. Comparison between the results of numer- 
ical calculation and flume experiment shows good agreement for the random wave 
shoaling near the breaking point and for wave disintegration due to a submerged 
breakwater. 

1 Introduction 

The mild-slope equation derived by Berkhoff (1972) has widely been used in the numer- 
ical calculation of refraction and diffraction of regular waves. However, the randomness 
of sea wa.ves has a. significant effect on the wave transformation especially due to refrac- 
tion and diffraction. In this paper, linear and nonlinear governing equations are derived 
to calculate the time evolution of random waves subject to refraction and diffraction. 
In the linear equation, a term for the energy dissipation due to breaking is added to 
simulate the random wave field in the near shore zone. Results of numerical calculations 
are compared with those of laboratory experiments in wave flumes. 

2 Linear Theory 

2.1     Derivation 

2.1.1     rational approximation 

The mild-slope equation derived by Berkhoff (1972) is written as 

V(ccgV?/) + k2ccgr) = 0 (1) 
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where f\ is the complex amplitude of the water surface elevation, c the wave celerity, cg 

the group velocity and k the wave number, and V denotes the differential operator in 
the horizontal two directions. To simplify the equation, the transformation by Radder 
(1979) is employed: 

4> = V/Vccg (2) 

Then, within the accuracy up to the first order in the bottom slope, the resultant 
equation becomes a Helmholtz equation: 

V2<£ + £:2^ = 0 (3) 

The time-dependent quantity, cj>, corresponding to c/> is expressed as 

4> = h-iut (4) 

where w is the angylar frequency and t the time. For the random wave analysis, (j> is 
composed of an infinite number of component waves and the angular frequency differs 
from component to component; however, a unique value must be chosen to express cf> 
of random waves. Thus a slowly varying amplitude, <f>, is defined from <j> as 

<j> = h~iG,t (5) 

where Co is a certain representative angular frequency such as the average frequency. 
Comparison between Eqs. (4) and (5) gives 

4> = h~iwH (6) 

where u>' is the deviation from the representative frequency and defined as 

u/ = u;-w (7) 

Equation (6) implies that <^> is a slowly varying function of time. 
Since the Helmholtz equation (3) is independent of time, the governing equation for 

4> has the same form. When an energy dissipation term which is expressed in terms of 
the energy dissipation coefficient, /D, is added, the equation is expressed as 

V2^ + A:2(l + i/D)^ = 0 (8) 

Equation (8) cannot be used to calculate <f> of random waves directly since the co- 
efficients included vary with the frequency. Linear approximation (Kubo et ai, 1992) 
and parabolic approximation (Kotake et ai, 1992) to the coefficients were employed in 
the previous studies. To improve the accuracy of approximation, a rational function is 
used in the present study. 

Consider the following approximation to Eq. (8): 

V24> - *«iV2(||) + (6o + ico)4> + i(bi + ici)^ - &2§ = 0 (9) 

where the coefficients a1; b0, &i, 621 Co and c\ are constants and independent of the 
frequency. Theoretical consideration on stability condition requires that the highest 
orders of approximation for b and c should be second and first, respectively. The order 
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for a is lower than that for b so that the ADI method may be available in the numerical 

calculation. 
For monochromatic progressive waves expressed as 

2 _       i(kx cos 9+ky sin 0-uj't) 

Eq. (9) becomes 

- k2 + aifcV + (b0 + ic0) + (&x + ic^u' + b2u>12 = 0 

from which the approximated dispersion relation is obtained as 

P = (&0 + bito' + b2u'2)/(l - aiw') 

(10) 

(11) 

(12) 

The values of the coefficients should be determined so that the error in the approxima- 
tion (12) may become minimum without causing numerical instability. 

2.1.2     determination of coefficients 

Equation (11) can be solved for ui' as 

J = {-(oiP + 6i + id) ± \J{a^ + 61 + iCl)
2 - 4&2(-fc

2 + 60 + »co)}/(262)     (13) 

To avoid numerical divergence, Im{oj'} < 0. This requires that the magnitude of the 
imaginary part for J should not exceed c\. Let the real and imaginary parts in the 
J     be denoted by X and Y, respectively, then the condition is written as 

X > 0 (ci = 0) (14) 

X > (y/2Cl)
2 - c\ (ci > 0) (15) 

The above condition should be satisfied for an arbitrary k, which yields 

b\ - 4b0b2 > 0,    c0 = 0       (ci = 0) 

A2-(h>(^)<0        (c1>0) 
ci b2    c\ o2 

(16) 

(17) 

Within the above restrictions, we take the equal sign for the sake of convenience. Then, 

bi = 2s/b^b~2 (18) 

ci = (2b2/b1)c0 (19) 

By considering the above two equations, independent parameters are a\, bo, b2 and CQ- 

When we determine the values of these parameters, we compensate for the error 
included in the finite difference form of the equation. For waves progressive in the 
s-direction, the central finite difference expressions for each term in Eq. (9) are related 
with the corresponding derivatives as 

dx2 

dt 

u2/3o 
F.D. 

dx2' dx2 ldt ' 

= A df dt2 

F.D. 

F.D. 
a2^W2im}> IF.D. •M 

(20) 
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where  |p.rj, denotes the finite difference expressions and 

Po = (2/3) cos a/Ai + (lv3), ft = {(sinuMi)/(w'At)} 

are correction factors. Then, instead of Eq. (11), the finite difference equation for Eq. 
(9) implies 

- a2Pft> + aia2P/W + b0/30 + &iftw' + b2p2J
2 = 0 (22) 

for Co = ci = 0. Three independent parameters can be determined from three sets of 
u)' and k which satisfy the dispersion realation exactly: 

- b*2a2k?p0 + ala2kfprJ, + ?Po + 2&M + P2Jt
2 = 0    (/ = 1,2,3) (23) 

where b*2 = l/62,  f = 7W^,   oj = 0l/62 (24) 
Since Equations expressed by (23) are linear in 62 

and ai; these parameters can be 
eliminated to yield a parabolic equation in terms of £. After solving for £, we can 
determine 62, 60, aj and &! by Eqs. (18) and (24). 

2.1.3 breaking wave model 

Breaking wave model used is the same as Isobe (1987). First, the relative wave ampli- 
tude is defined by 

7 = \v\/h (25) 
The critical relative amplitude, 71,, for breaking of an individual wave in the random 
wave train is given as 

7b = 0.8 x 7b (26) 

7b = 0.53 - 0.3exp(-3v
/ftyio) + Stan3/2/? exp{-45(v

//},/Z0 - 0.1)2}        (27) 

After breaking, the energy dissipation coefficient is introduced as follows: 

fn = h3,npJj-J^^ (28) 
2 V k°hV 7s - 7r 

7S = 0.4 x (0.57 + 5.3 tan P) (29) 

7r = 0.135 (30) 

From /D determined at the representative frequency, CQ = k2:/rj and c\ is calculated 
by Eq. (19). Thus all the coefficients in Eq. (9) are determined and <fi can be calculated. 

2.1.4 water surface elevation 

In Eq. (2) which determines the water surface elevation from the calculated 4>, the 
coefficient ^/cc^ is also a function of frequency but can accurately be approximated by 
a second-order polynomial function. Therefore, Eq. (2) is approximated by 

77 = d0j> + dx— + d2-^ (31) 

where the constants, do, di and d2, are determined from the values of ,/ccg at three 
different frequencies: 

d0 + drfru'i + d2p2J? = (1/v^)/    (I = 1,2,3) (32) 
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2.2     Error evaluation 

Since l/Jccl is constant for low frequency and proportional to the frequency for high 
frequency, the second-order approximation has a high accuracy. On the other hand, 
since k2 is proportional to to2 and u>4 for low and high frequency, respectively, even the 
rational approximation may not have a sufficient accuracy. 

Figure 1 shows the interval from wlnin to wmax within which the relative error of 
k2 is less than 1%. The three frequencies for determining the coefficients are denoted 
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Figure 1: Frequency intervals within which the maximum relative error of k2 is 1% 

by tinim, w and wmax, and therefore u[, u'2 and W3 in Eq. (23) are (b^^ — Q, 0 and 
(imH - w, respectively. The horizontal axis is the nondimensionalized representative 
angular frequency uiy/h/g (h: the water depth; g: the gravitational acceleration). Lines 
are drawn for various relative grid size As/X (X: the wavelength at w). Figure 2 shows 
the same interval for various relative errors. From these figures, the interval becomes 
narrowest at about oj^h/g — 1.4. Finally, Fig. 3 shows the narrowest interval as a. 
function of the relative error. The relative grid size, Ax/L, is assumed to be 0.1 but 
does not have much infhience. 

From Fig. 3, if the relative error of k2 is permitted up to 10%, most of the energy 
in random waves will be included in the interval and therefore the transformation of 
random waves can be analyzed by Eq. (9). This may usually be the case because the 
wave energy at the frequency far different from the representative frequency is usually 
small. However, for random waves with a very wide banded spectrum and a small 
relative error of fc2, the frequency interval ha,ve to be divided into several sections and 
the results of calculation for each section are superimposed. 
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2.3     Sample calculations 

Once the representative frequency and the grid size are fixed, the gird size to wavelength 
ratio may become large for high frequency. Figure 4 examines the effect of grid size 
for analyzing wave shoaling on a uniformly sloping bottom. The angular frequency, ui, 
of the waves analyzed is 0.8u> for which the error of k2 becomes almost maximum. In 
the upper figure, the agreement with the analytical solution is very good. Even in the 
lower figure for which the relative grid size is as large as 0.321, the agreement is not 
bad, which may be acceptable in analyzing far side frequency band component. 

(o) Ax/L0 = 0.04, At/f-= 0.1       {w/G> = 0.8, w^/w = 0.6, aw/w = 1.4) 

0.05 h/L0 -0.01 
0.074-  h/L  0.032 

l __ 0.059- Ax/L  0,129 

V 
\   :    \0 

analytical numerical 

(6) Ax/L0 = 0.1,At/f = 0.2       (w/w = 0.8,wlnin/cu = 0.6,wmax/u> = 1.4) 

0.05 h/L0  0.01 
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0.148 Ax/L ~ 0.321 
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Figure 4: Effect of grid size and time interval on the accuracy 

Figure 5 compares calculated and measured water surface elevation due to shoaling 
random waves. The incident wave profile which is shown in the upper figure was mea- 
sured on a horizontal bottom with water depth of 40cm. From the point, a horizontal 
bottom with 0.4m in length, a 1/10 slope with lm, and a 1/30 slope are installed. The 
onshoreward measuring point is located 2.6m from the beginning of the 1/30 slope and 
the water depth there is 21cm. The frequency interval was divided into four sections 
in the numerical calculation. The agreement is seen to be very good. However, near 
the breaker zone where nonlinearity of waves is strong, steepening of wave crests can 
not be reproduced by the present linear theory, even though energies of wave groups 
are fairly well reproduced. This implies that the present linear theory can be used to 
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meas. 

Figure 5: Comparison between calculated and measured water surface elevation in 

shoaling water 

predict the distribution of integral properties such as the wave energy and radiation 
stress. To predict the wave profile in the nearshore zone, nonlinear theory must be 

employed. 

3     Nonlinear Theory 

3.1     Derivation 

3.1.1     definition of Lagrangian 

A Lagrangian L which is euivalent to the basic equation and boundary conditions for 

water surface waves is given as follows (Luke, 1967): 

/•te r r   rv 

JJAJ-h 
L[^r,] ^ + ^ + l(^)2

+9z}dzdAdt (33) 

where unknown functions are the velocity potential <j> and the water surface elevation 
7], and h and t2 denote the beginning and end of time, A the area of concern in (x,y) 
plane, h the water depth, g the gravitational acceleration, V = (|j, j|) the differential 
operator in the horizontal directions, (x, y) = x the horizontal coordinates, z the vertical 

coordinates, and t the time. 
The variation of L due to small variations of (j> and i) is obtained from Eq. (33): 

SL 
d2<p 

+^S+v??w" £}* |+{v»w+5f 
;=-h 

dAdt 
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+  f2f   f" ^Scj>dzdsdt+ (I [n M'2 dzdA (34) 
Jti JcJ-h on .iJAJ-h L    J'i 

where C denotes the boundary of A. To terminate L for small variations of <j> and i] in 
an arbitrary point, all the integrands in the above equation must vanish. The Laplace 
equation for 4> can be obtained from the first integral, and the dynamic and kinematic 
free surface boundary conditions and the bottom boundary condition, respectively, from 
the first, second and third terms in the second integral. Therefore the application of 
the variational principle to L results in the basic equation and boundary conditions for 
water surface waves. The third and fourth integrals are, respectively, related with the 
lateral and initial conditions which are given in each specific problem. 

3.1.2     vertical distribution functions 

Wave equations such as the mild-slope equation and Boussinesq equation are two- 
dimensional equations which are obtained by integrating vertically the govering three- 
dimensional equations. For the integration, vertical distribution functions are intro- 

duced theoretically or a priori. Massel (1993) derived an extended mild-slope equation 
by introducing a vertical distribution function of hyperbolic cosine type and integrating 
the governing equation. A clear and generalized consept of this procedure was proposed 
by Nadaoka and Nakagawa (1993) and Nadaoka et al. (1994) in deriving a strongly- 
nonlinear, strongly-dispersive wave equation by applying the Galerkin method to the 
Euler equations of motion. Nochino (1994) used another set of vertical distribution 
functions to derive a nonlinear dispersive equation. The present theory also intro- 
duces vertical distribution functions and integrate the Lagrangian to yield a nonlinear 
mild-slope equation. 

First, the three-dimensional dependent variable, cf>, is expanded into a series in terms 
of a certain set of vertical distribution functions, Za(z), given a priori: 

JV 

4>(x, z,t) = £ Za(z\ Kx)) /a(x,t) = Za fa (35) 
a=l 

where the function, Za, may change according to the water depth h, and fa is the 
coefficient for Za and a function of x and t but not of z. The summation convention 
will be applied hereafter. 

Then, after substituting Eq. (35) into Eq. (33), the integration is carried out in the 
vertical direction: 

L^^=CIl(U"d-t^)dAdt (36) 

*(/«, ?£,n, §) = ftf - ^) + zp^f + \AlPvf^fp + \B^}P 

+C7/3/7V//3V/> + ^DMfttyh? (37) 

where 

Za dz (38) 
h 
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/v 
ZaZ/3 dz 

•h 

" dZa8Zp 

'a0=L 
•jap=/_ 

dz   dz 

•i dZ, 

dz 

dh 
Zpdz 

" dZa dZfj 

h  dh   dh 
dz 

(39) 

(40) 

(41) 

(42) 

The above coefficients, Za, Aap, Bap, Cap and Dap, are obtained from given vertical 
distribution functions and then the Lagrangian is expressed by Eq. (36) as an integral 
in the horizontal two-dimensional plane. 

3.1.3     variational principle 

Application of the variational principle to Eq. (36) in terms of rj and /„ yields Euler 
equations which are expressed in general forms: 

JO. 
dfc 

d di 

d£    d 

ld(dfa/dt) 
+ v 

+ v 

dt 

d(yn) 

(43) 

(44) 
dr,     dt [d(dr]/dt). 

Substituting Eq. (37) into Eqs. (43) and (44), a set of nonlinear partial differential 
equations is obtained for analyzing nonlinear water wave transformation: 

Z"m+ V(AaPVfp) " Bapfp + VCP°ff>•) ~ C«^fpVh - Da0f0(\7h)2 = 0    (45) 

7ndfp 9v + z}^ + -z«z;vf,vfp + - 
1 dZ? dZ\ I 
2 dz   dz 

dZ!> 
f-rfp + -Q^ZpfyVfpVh 

1 dZl> dZ} 
'2 dh   dh +r-£-"-£-ww • 

where 
Zl 

(46) 

(47) 

The above equations includes terms up to the second order in the bottom slope; 
however, vertical distribution functions given will usually be consistent only with a 
horizontal or mild-slope bottom. Therefore, on assuming that the bottom slope is 
mild, the terms of the second order are neglected to yield a set of nonlinear mild-slope 
equations: 

TV ?R Jadt 

dzl 
+ V(AapVfp) - BaPfp + (Cpa - Cap)VfpVh + —fZ2fpVVVh = 0       (48) 

dh 

2 

1 8ZH dZ2 7 W"P dZl m + zy-£ + jz^vf^ + izjji^JL-M0 + --iz}wuvh = o      (49) 
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The total number of equations is (N + 1) since Eqs. (48) and (49) contain 1 and 
N components, respectively. On the other hand, the total number of unknowns, 77 
and /„ (a = 1 to N), is (N -f 1). Therefore, with appropriate boundary conditions, 
the equations can be solved numerically. Then, the velocity is obtained through the 
velocity potential expressed by Eq'. (35). 

3.2     Sample vertical distribution functions 

A set of vertical distribution functions should be selected so that the velocity potential 
may accurately be expressed by Eq. (35) with a small number of terms. As understood 
from the small amplitude wave theory, hyperbolic cosine functions may be effective for 
deep to intermediate water, whereas polynomial functions for very shallow water. Here, 
for the sake of simplicity, polynomial functions are chosen and analytical expressions 
for the coefficients are shown. 

As inferred from shallow water wave theory, we select a set of even-order polynomial 
functions: 

Z„ = I ~- ) (50) 

Then, Eqs. (47) and (39) to (41) give 

21 = C2"1 

where 

(51) 

^ = h2^TMTT (52) 

Ba
0 = -   h     2(a1+/3l)-l 

(53) 

/•2(ai+/3i)+l X2(ai+ft) 
Cag=-2a   „>     ,   „ ,     .-± -^ (54) 

(55) 

(56) 

(57) 

To check the effectiveness of the polynomial functions, the dispersion relation of 
the linearized equation is examined for a horizontal bottom. In the linear theory, the 
coefficients expressed by Eqs. (51) to (53) are evaluated at z = 0 instead of z = £. 
By denoting the quantities at z = 0 by superscript °, the following equation can be 
obtained by eliminating r\ from the linearized forms of Eqs. (48) and (49) on a horizontal 
bottom: 

£2(ai+/3i)+l £2(ai+ft) 

_2(ai+/3i)-l 2(ai+/3i) 

C = (h + z)/h 

a>i = a — 1 

Pi = P ~ 1 

(58) 

where from Eqs. (51) to (53) 

*a/3 

Z°a = l 

h/{2(«i+/8i) + l} 

(59) 

(60) 
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For progressive waves, 

B°aP=4a1/31/[h{2(a1+13^-1}} (61) 

(62) 

By substituting the above expression into Eq. (58), the following homogenious equations 
are obtained: 

'.)-lJ0/5~fc2£2(«i + /3i)T 
ap (63) 

For a given w, k2 is obtained as an eigenvalue which gives a non-trivial solution to 
the above equations. At least up to Ar = 4, it was confirmed numerically that only one 
eigenvalue is positive and the others are negative. A positive value of k , i.e., a real 
value of k, corresponds to progressive waves, and a negative value to evernescent waves. 
The relationship between the frequency and wave celerity of the progressive waves is 
shown in Fig. 6 for various N. As can be seen, agreement with the linear wave theory 

1 
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0. 8 
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0. 4 

0. 2 
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0 1 2      /T7- 3 4 

u\Jh/g 

Figure 6:  Dispersion relation for vertical distribution functions of even-order polyno- 
mials 

is good for shallow to deep water even with small N. 
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3.3     Sample calculations 

Figure 7 compares calculated and measured water surface elevation ij and bottom ve- 
locity Mb in shoaling water. Even for Case 2-2 in which nonlinearity is strong at the 
measuring point, agreement is good for the bottom velocity as well as the water surface 
elevation. 

Figure 8 compares calculated and measured water surface elevation around a sub- 
merged breakwater. Nonlinearity and dispersion are significant on the breakwater and 
on the horizontal bottom, respectively. Agreement is good even with a small number 
of N (N = 3). 
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Figure 7:  Comparison between calculated and measured water surface elevation and 

bottom velocity in shoaling water 
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4    Conclusions 

A time-dependent mild-slope equation for random waves is derived from the mild-slope 
equation by approximating rational function to the frequency-dependent coefficients. 
This equation allows to simulate the time evolution of short-crested random waves in the 
nearshore area. Agreement between calculated and measured water surface elevation 
in the offshore zone is good because wave nonlinearity is not essential. 

A nonlinear mild-slope equation is derived by expanding the velocity potential into 
a series in terms of vertical distribution functions and then applying the variational 
principle to a Lagrangian. Comparison between calculated and measured quantities 
confirms the validity of the theory even for a strongly nonlinear and dispersive wave 
field. 
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