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MEASURING WAVES WITH MANOMETER TUBES 
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Abstract 
A new type of wave gauge has been developed for the measurement of waves near a 
beach or near an existing coastal structure. It consists of a nylon tube with diameter 
between 0.5 and 1cm and length up to 500m. The seaward end of the tube is open so 
that the wave induced pressure fluctuations can be transmitted through the water in the 
tube. The landward end, which is conveniently above the water, is fitted with a 
pressure transducer. This is simple and reliable technology well suited for use in 
developing countries. Maintenance and running coasts are also very low. The 
frequency response function of the system is somewhat complicated but a workable 
formula is presented and "once and for all" calibration of the system can be done very 
easily. 

Background 
The authors were prompted to look for a new type of nearshore wave gauge by the 
difficulty encountered with getting representative wave data for the Brunswick Heads 
field site during storm conditions. The problem with that particular site is that the 
nearest offshore waverider, which is off Cape Byron, tends to go a drift during 
"interesting" weather conditions. This leads to increased difficulty with interpreting the 
most interesting data. 

The above mentioned example is not isolated. There is a considerable general 
need for a simple, inexpensive method of measuring nearshore wave heights, i e within 
50 to 500 metres of a beach or an existing structure. 

The existing devices for nearshore wave measurements include surface piercing 
gauges, "Schwartz poles", and bottom mounted current meters and pressure 
transducers.    All    of   these    are    well    proven    but    not    without    problems. 

' Coast and Floods Branch, New South Wales Public Works Department, Po Box 
5280 Sydney 2001, Australia. 

' Department of Civil Engineering, University of Queensland, Brisbane, Australia 
4072. Fax +61 7 365 4599, e-mail: nielsen@civil.uq.oz.au. 

207 



208 COASTAL ENGINEERING 1994 

Not all locations allow the installation of a "Schwartz pole" because the supporting 
structure becomes very expensive with increasing depth and it may present a 
navigation hazard. 

One problem with bottom mounted pressure transducers/current meters is that 
they tend to get lost to trawlers etc. Secondly, the fact that it is impossible to check 
their performance during the deployment has lead to many diappointments when the 
instruments, upon recovery, have been found to contain no useful data. The tubes of 
the present system are usually buried in the sand and thus protected from "trawler 
attack", see Figure 1. 

Data 
logger 

Figure 1: The idea is to estimate the water surface elevation time series r\{t) on 
the basis of measured pressure fluctuations p'{t) at the landward end of a water 
filled nylon tube. 

A new type of cheap and reliable nearshore wavegauge 
The present study has investigated the possibility of measuring waves by monitoring 
the pressure fluctuations p\t) at the landward end of nylon tubes of 10mm OD and 
lengths between 50 and 500 metres. The seaward ends of the tubes are exposed to the 
wave induced pressure fluctuations p+(t), See Figure 1. 

The main problem addressed here is that of estimating of p+ on the basis of p'. 
However, the second step in the process of getting wave data from p', namely 
determining the surface elevation r| from p+ is also discussed briefly. 
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Initial field testing 
Initial field testing has been performed with the new tube-transducer system in order to 
assure that the transmitted pressure signal p '(t) is of adequate strength and that the 
system is easy to operate in the field. The system performed very satisfactorily in these 
tests. The transducer connected to the tubes which are permanently installed at 
Brunswick Heads. Connection and evacuation of the sytem takes only a few minutes. 

The pressure signal was initially recorded by a chart recorder in the field. The 
p '(0-signal has a low noise level and is of adequate strength to be recorded with the 
chart recorders OSOmV range. The transducers applied in the present study are Model 
AB Pressure Transducers from Data Instruments Inc, Ma, USA. In later field tests the 
data was recorded in digital form on a portable PC. Various combinations of pressure 
transducers and recording equipment can be used but it should be noted that the 
working range for the pressure transducer should be about 0.5 - 1 atmosphere absolute, 
i e, the working pressure is below atmospheric pressure. 

Pressure transducer on the bed 

Relationships between the dynamic bottom pressure p (p(t) = p+p (r)) and the 
surface elevation r| may be taken from linear wave theory for monocromatic small 
amplitude waves 

+ 
Tl   =  ^— cosh kh (1) 

Pg 

where k is the wave number 2 n/X , X is the wave length and h is the water depth. 
For irregular, non-linear waves, local approximations may be used. Nielsen 

(1989) recommended the formula 

Pn \l ~pt-i+2pn-pt+i ,, , pt.) ,„. 

based on a measured time series  pi,p2,p3, • • • • 
As an alternative to the local approximations approach, the classical spectrum 

transformation approach may be applied. With this method a Fourier transform is 
applied to the pressure record. Then each spectral estimate is transformed in 
accordance with Equation (1). Finally, the inverse Fourier transform is applied to the 
transformed spectral estimates to obtain an estimate of the surface elevation time 
series. The relative merits of the two methods has been discussed by Nielsen (1989). 

Transducer hurried in the bed 
It is possible that a layer of sand on top of the "open" end of the tube can cause extra 



210 COASTAL ENGINEERING 1994 

damping. Most likely however, the effect is negligible for typical beach sand and 
typical wave frequencies. 

Sleath (1970) and Maeno & Hasagawa (1987) measured pore pressures inside 
the bed simultaneously with pressures at the bed surface. The pressure amplitude ratios 
agreed reasonably with the formula 

l/l   = P£ 
H   cosh k{z + h\) 
2 cosh kh cosh kh\ (3) 

where z   is the transducer elevation measured from the sand surface h is the water 
depth and hi is the thickness of the sand bed, see e g Sleath (1984). 

According to this formula it makes very little difference whether a transducer, at 
a fixed depth below the water surface, is covered with sand or not. Consider for 
example, the situation in Figure 2. 

4m 
4.5m 

J_ 
0.5m • 

3m 
-•. 
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Figure 2:  The pressure felt by a transducer 4.5m below the MWS under a 9s 
wave changes very little due to a sand cover of 0.5m. 

A pressure transducer is placed 4.5m below the MWS. The wave period is 9s, 
and we consider the situation where the sand level is at the transducer level as well as 
the situation where the sand level is 0.5m above the transducer. The bed is assumed 
impermeable below -7m. 
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Linear  wave  theory  plus  Equation  (3)   gives   \p+\ = 0.889pgH/2  for the 

"uncovered case" and \p+\ = 0.885pg/f/2 for the "covered" case. This difference is 
negligible compared to the accuracy of linear wave theory. It should be noted however 
that finer material like silt or mud will provide a stronger damping of the pressure 
signal than 0.2mm sand. 

The speed of pressure waves in a flexible tube 
The frequency response of the tube-transducer system in Figure 1 depends crically on 
the speed of pressure waves in the tube. This speed, in turn, is a function of the 
compressibility of the water, the rigidity of the tube walls and, if air bubbles are 
present, of the bubble concentration. 

In an infinite fluid, the speed c of a plane sound wave is determined by the 
density p and the compressibility K 

c   =   JTT (4) 

The speed of sound in sea water is approximately 1500m/s, corresponding to a 

compressibility K of  4.4-10"10Pa_1. 
If the fluid is contained in a flexible tube, the speed of sound will be reduced in 

accordance with the formula 

°   =   Vp (* + £>) (5) 

where the distensibility D of the tube is defined in terms of the normal cross sectional 
area A0 and the excess pressure pe by 

D  =  f ^1 (6) 
A0 dpe Pe=o 

If the tube cross section is circular, the distensibility can be due to stretching of 
the wall only. However, if the normal tube cross section is not circular a greater 
distensibility may be partly due to this non-circularity. In this case, an area increase 
may be obtained by bending the wall towards the circular shape. Thus, the speed of 
sound in an oval shaped tube will be lower than in a perfectly circular tube for the 
same wall thickness. 

Experimental determination of the distensibility 
Experiments were performed to determine the distensibility of lOmmOD Nylex tubing 
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by monitoring the volume increase in 60m of tube as function of excess pressure. 

The results are shown in Figure 3 and the best-fit distensibility   (— —)  was 
Vo dp 

found to be 2.0-l(T8/V1. We note that the behaviour of the tube material is linear up 
to excess pressures of at least 120 kPa, corresponding to 12m excess head of water. 

0.0000 0.0005 0.0010 0.0015 
RELATIVE VOLUME INCREASE (-) 

0.0020 0.0025 

•"   Loading      "•   Unloading 

Figure 3: Expansion test data for 10mm OD Nylex pressure tubing (standard). 

According to Equation (5) this corresponds to the speed of sound c = 224m/s 
for a 70mm OD Nylex tube with no air bubbles. 

A complementary streching test was performed on a short (150mm) length of 
tube to determine Young's modulus E for the tube material. Based on a measured ID 
of 6.7mm and wall thickness 8 of 1.67mm the result was E= 2.03-108Pa. 

Through the simple relationship 

D « A. 
bE (7) 

this gives a distensibility of 1.9510'8Pa' in close agreement with the direcdy 
measured value above. The manufacturer's value for E is 35kg/mm2 corresponding 
to 3.4-108Pa for standard tubing (all colours) and 100kg/mm2 (They must be thinking 
in terms of "kg force") corresponding to 9.8108Pa for "semi rigid tubing (only black). 
The discrepancy (3.4 versus 2.0) being due to uncertainty of tube dimensions in test 
and to variable humidity. The laboratory tests were perfomed with fully wet tubes. 
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The effect of air bubbles on the speed of sound 
Small, isolated air bubbles can also slow down the pressure waves in the tube. They do 
this by effectively increasing the distensibility. To quantify this effect, consider for 
simplicity an air bubble of volume Vo at the ambient pressure p0, which is compressed 
isothermally. Its volume is then given by V(p) = V0 po/p and hence, 

dp p2 po 

The presence of air bubbles with concentration   Cair   (vol/vol) will therefore 
increase the distensibility by the amount 

Dair   -   ^ (9) 
Po 

leading to the reduced speed of sound 

C  =   ^p{K+D+Cair/po) (10) 

Test for linearity with regular waves 
A series of measurements were conducted at the University of Queensland in the 

period August to October 1993 to establish the possible existence and importance of 
nonlinearity of the systems response to regular waves. 

Regular but not quite simple harmonic pressure waves with "heights" in the 
range 0.5m < H < 4.5m and periods in the range 2s < T < 7s were generated by 
moving a small reservoir with mercury up and down in a quasi simple-harmonic 
fashion. The test tube was approximately 100m of 10mm OD Nylex standard tubing. 

The data indicate that the gain is only weakly dependent upon the amplitude and 
hence, the use of a linear frequency response model (Equation (15)) developed below 
for the system is reasonably well justified. 

Frequency response for the tube-transducer system 
As a working hypothesis, it was assumed that the tube-transducer system can be 
modelled in analogy with a dampened "quarter length resonator". That is, it has 
resonnant pressure wave modes of the form indicated in Figure 4. Such a system has 
the approximate frequency response function 

F(f)   =    7^TTi T7\ (ID ILL 
2fo 

+   iDE 
L 

4°; 
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Figure 4: Assuming that the pressure transducer forms a hard, reflecting 
boundary, the tube/transducer system will behave as a dampened quarter length 
resonater and have infinitely many resonant wave modes of which the first three 
are shown here. 

where DE (f/fo) is an energy dissipation function. The corresponding gain function is 

1 
G(f)   =   \F(f)\   = 

<c 
Xfo 

+  DE 

(12) 

In these expressions, fo is the lowest resonance frequency corresponding to the 
resonance period T0. It is seen from Equation (12) that the gain function has peaks for 
all odd multiples of the resonance frequency f0. This model is in reasonable agreement 
with experiments see Figure 5 

The experiments show the first two peaks of the gain function rather clearly. 
The mode of resonnance has a pressure antinode at the transducer end and a node 

at the open end of the tube, see Figure 4. Hence, the resonant pressure wave in the tube 
resembles a seiche in a bay. The length of the tube must in that case be 1/4 of the 
wavelength of the first mode: L = \o/4 = c T0/4, corresponding to the 
resonance frequency 

fo ~   AL 
(13) 

the frequencies of the higher resonant modes are all the odd multiples of/o. 
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Figure 5: Gain functions measured in the laboratory for a 120m and a 
59m ODIOmm tube (Nylex standard pressure tubing). The frequency response 
data was obtained by comparing the output of two transducers. One at the closed 
end of the tube and one at the "open" end where irregular pressure focing was 
provided by moving a water filled open ended tube up and down, 

Energy dissipation and damping 
The maximum gain values observed with 70mm Nylex tubes of lengths 60m to 120m 
are of the order 4.5 and 3.5 respectively, see Figure 4. 

These finite gain values indicate some damping in the system. The nature of this 
damping i e, the loss of energy is not completely understood. - The energy may be 
turned into heat in the fluid and in the tube walls. Alternatively, it may be radiated 
away. Radiation may occur along the full length of the tube or mainly from the open 
end. 

Energy loss in the form of heating of the fluid is caused by the viscosity V and 
may be estimated as follows. The rate of heat generation in a boundary layer is Wool 
where Hoc is the velocity at the edge of the boundary layer and x is the wall shear stress. 
The wall shear stress may, under the assumption Vv T « d, be estimated by the 
formula ITI = p ^2%fv \uoo\ which holds for a plane, oscillatory boundary layer, see 
e g Nielsen 1992, p 21. The velocity amplitude IMCJ is related to the pressure amplitude 
by u = p/pc, see Lighthill 1978, p 4. Hence the energy dissipation due to fluid 
viscosity in a tube of length L  and diameterd over one period can be estimated by 



216 COASTAL ENGINEERING 1994 

DE/iuid  -   pu2^2nfv LdT. 
The loss of energy as heat in the tube walls may be estimated as follows. For a 

given pressure amplitude \p\ , the deformation of the tube wall is of the magnitude 

~ ^    where 8 is the wall thickness and E is Young's modulus for the tube material. 
6E 

Hence, the work done on the tube wall per unit length through one cycle is of the 

I I2 d3 

magnitude   '„ and the work done on a tube of length L   in one period is 
o E 

2    3 
"-      L. Since the general magnitude of \p\ along the tube is \p 'I, this may be written 
o E 

I    'I      .-/ I    ' I      T   si £ 

DEwaii   ~      ~       L  ~  — ^—,  since  pc   ~ E —   for relatively flexible tubes, 0 E p c
z a 

cf Equations (5) and (7). 
The   energy   flux   through  the  tube  cross   section  is   of the   order  \p\cd 

corresponding to an energy input of \p I c d T    at the open end during one wave 
period. 

Based on these considerations, and with  p' = G p+, we find that the relative 
energy loss DE can be quantified approximately by 

^ +  ^^nJV-TdL 
_     energy loss p c p_c  

energy input \p+\ c d2 T 

DE  =     energtU^   =    GJgIL ^V^ 
energy input 0 c 

where Ci and C2  are dimensionless coefficients. 

A semi enmpirical gain function 
Based on the analysis above, which indicates the existence of some damping terms 
proportional to the square root of the frequency and some which are proporttional to 
the frequency it seems reasonable to suggest a semi empirical gain function of the form 

G = - } \T= (15) 
Vcos2?^ UrsAi+^V-^)]2 

2fo c fd 

Based on the data shown in Figure 5 the values of the dimensionless constants 
were found to be (B\ , B2) = (0.58, 5.0). The fact that B2 » Bi indicates that the loss 
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due to fluid viscosity is dominant compared to the loss due to deformation of the tube 
walls for these tubes. The formula (15) with these values of Bi and B2 is compared 
with the data in Figure 6. 

Figure 6: The semi empirical gain function (15) compared with laboratory 
measurements. 

The  matching  of the  shape  of the  gain function  is  not perfect,  but the 
discrepancies seem to be due to the cosine function not having the right shape. 

Calibration 
The values of the constants Bi and B2 which were determined on the basis of the data 
in Figure 5 may not be universal. Hence, when working with systems with different 
lengths, diameters and tube materials it would be wise to calibrate the system before 
deployment. This calibration is best done in the way described in connection with 
Figure 5. 

Evaluation of the system 
The indication of the tests carried out so far is that the new wave gauge offers a cheap 
and reliable alternative to existing gauges for measuring the wave conditions in 
shallow ( < 5-6m) depths near (OSOOm) beaches or existing structures. The main 
advantages of the new system are that it is cheap and easy to service and interrogate 
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because all electronics are kept "high and dry". 
Based on the field, it can be concluded that using the sytem in the field with 

tubes which are already in place is easy (installation time about 5 minutes in fair 
weather). Earlier tests also show that deployment of the tubes for a one or two day 
experiment on a beach is manageable, provided a 4 wheel drive vehicle is at hand to 
help pull the tubes back ashore. 

The pressure signal is of adequate strength, and the noise level is very low 
provided the tubes are prevented from moving with the waves. This is normally 
achieved by tying the tubes to an 8mm steel chain. 

Variable degrees of sand cover over the seaward end of the tube seem not to 
cause problems with the translation of dynamic bottom pressures into water surface 
elevations. However, thich layers of silt or mud may have a very strong dampening 
effect. 

The frequency response function for the system is fairly complicated. It has 
several peaks and the dampening is non-linear. However, with the use of Nylex 
standard pressure tubing the second peak of the gain function will generally be well 
outside the frequency range of ocean waves. For example, a 600m WmmOD tube 
system will have its second peak at / = 0.45Hz (fo = 0.15Hz) and most of the energy 
in the pressure spectra from wind waves on a beach lies at freqencies below 0.25Hz. 
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