
CHAPTER 245 

COMBINED CONVECTION-DIFFUSION MODELLING 

OF SEDIMENT ENTRAINMENT 
by 

Peter Nielsen 

Abstract 
A new, quantitative framework is presented for the modelling of suspended 
sediment concentration distributions. It accounts for large scale mixing 
(convection) as well as small scale mixing. The small scale mixing is modelled 
in terms of gradient diffusion as usual. It is shown how the new, combined 
convection-diffusion model can explain the different c(z)-distributions of 
different sediment sizes in the same flow. Also, the dependence of the 
c(z)-distribution shape on wave period and sediment settling velocity is 
explained for oscillatory flow over ripples. It is shown that individual Fourier 
components of cn{z,i) behave differently in diffusion dominated and in 
convection dominated flows. This makes it possible to determine the dominant 
entrainment mechanism (convection or diffusion) on the basis of concentration 
time series taken simultaneously at different levels. 

1. Introduction 
Experimental data calls for a new description of the distribution of suspended 
sediment. That is, the traditional gradient diffusion model is inadequate as a 
description of many natural suspension processes. 

Gradient diffusion is suited only as a description for processes where the 
mixing length lm is small compared to the overall scale. It cannot describe 
details on a scale comparable or smaller than lm, see Figure 1. 

Some of the natural processes which involve large scale mixing 
mechanisms are: Entrainment of sand from rippled beds, lifting of sand straight 
from the bed to the surface behind plunging breakers, entrainment by turbulent 
bursts in sheet flow, entrainment by the obliquely decending vortices of 
Nadaoka et al (1988), and from steady streams, entrainment by the vortices 
which are formed behind dunes and subsequently carry sand to the surface. 
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Sediment 
concentration Diffusion: lm~L Convection -tm~L 

Figure 1: A concentration profile with overall scale L may be generated by 
either gradient diffusion ( lm<< L) or convective entrainment (Im ~ L) , but 
usually it will be due to a mixture of both. 

These processes require a different modelling framework than gradient 
diffusion. 

The quantitative framework for the combined convection-diffusion 
process is briefly derived in Sections 3 and 4. The main new ingredient here is 
the expression for the convective upward flux proposed by Nielsen (1991). 

Section 5 then discusses the shape of the distributions of time-averaged 
concentrations c(z). A single shape parameter S is defined with which 
variation in shape of the c(z)-profiles with wave period andsediment settling 
velocity can be explained. 

The behaviour of the time dependent (harmonic) components cn(z,t) of 
the concentration is discussed in Section 6. It is shown how the relative 
importance of convective versus diffusive mixing is indicated by simultaneous 
concentration time series from different elevations. 

3. Quantification of the convective entrainment flux 
Most natural suspension processes involve mixing on different scales, see 
Figure 1, and mechanisms with large mixing lengths lm compared with the 
overall scale, require a different mathematical framework than gradient 
diffusion. A quantitative description for the large scale (lm ~ L) mixing 
mechanisms is suggested as outlined in Figure 2. 
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Figure 2: Sand which is entrained from the bed at time t0 is assumed to travel 
upwards with speed wc. Not all of the sand will reach the same level. The 
distribution of entrainment levels ze is given by F(z) = P{ze>z}. After reaching 
its entrainment level ze at time to + ze/wc, a sand particle is assumed to settle 
out with its still water settling velocity w0. During the settling process it may be 
affected by small scale mixing (diffusion). 

A quantitative description of the convective, upward sediment flux q (z,f) 

in accordance with Figure 2, has been derived by Nielsen (1991,1992). He 
suggested the form 

q{z,t)   =  p(t-~-)F(z) (1) 

where p(t) is the amount of sand which is picked up from the bed at time t. 

4. Continuity equation for the combined process 
The continuity equation for the combined process, i e, the equation which 
expresses the conservation of sand in the combined convection diffusion 
process is 

dc dc 
—   =   w0 — 
dt dz dz dz (2) 

which with the expression (1) inserted for the convective upward flux, and with 
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dc 
the upward diffusive flux q   = - e^ —- becomes 

D dz 

dc dc       1    ,,      z , „, . ,      z s „,, .       d  ,    dc.      ,,,. 
—  -   w0— + — p\t-—)F(z) - p(t-—)F'(z) + —(es—)     (3) 
dt dz      wc wc wc dz       dz 

or 

ft - w° £ - i(e* f > - ^ - ^ F(2) -p{t ~ ^ F{z)  (4) 
dt dz       dz        dz Wc wc wc 

from which we see that the homogeneous equation is the usual diffusion 
equation, while the convective flux enters only through the forcing terms. 

4. The shape of the dz)-profiles 
The inadequacy of pure gradient diffusion as a universal model for sediment 
suspension becomes particularly evident when one considers the distributions 
of different grain sizes in the same flow. An example is shown in Figure 3. 
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Figure 3: Normalised distributions of different sand sizes in the same flow 
(oscillatory flow over ripples). The data was obtained by sieving suction samples 
from each elevation. Data from Nielsen (1983). 
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The interesting thing about these profiles is that they do not have the same 
shape. In this case, the fine sand shows typically upward convex profiles while 
the coarse sand shows upward concave profiles. Such differences between 
different sand sizes (different settling velocities w0) cannot be explained within 
the gradient diffusion framework. If the concentration profiles had been a result 
of pure gradient diffusion with diffusivity ES(Z), they would have had the 
mathematical form 

In 
c rdz 

—   =   -wo) — 
Co J   Es 

(5) 

where Co = c(o). 
This shows that the profiles for different sand sizes would have similar 

shapes when plotted as in Figure 3, the role of the settling velocity w0 would 
be only to tilt the profiles towards the left. 

The same picture as Figure 3 was presented by the natural-ripple-data 
from a subsequent laboratory study of McFetridge & Nielsen (1985). 

Another observation which underlines the need for a new distribution 
model is that time averaged concentration profiles over rippled beds under 
waves tend to change shape from upward convex to upward concave with 
increasing wave period. Examples of this are shown in Figure 4. 

10-1 

1E-05 6:6001 6.601 0.01 
Figure 4: Time averaged concentration profiles over rippled beds in an 
oscillating water tunnel. For the shortest periods, the .c-profiles arc upward 
convex (at least for the first 4 ripple heights). With increasing T, they become 
more and more upward concave. dso=0.21mm in all of the experiments.* : T=ls, 
Um3X=0.5m/s, + : T=2s, £/max= 0.5s, * : T=4s, Umax= 0.3mls, x : T = 10s, 
Umax= 0.3m/s. Data from Bosnian (1982) and Ribberink & Al-Salem (1989). 
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This change of shape of the c(z)-profiles with wave period is difficult to 
explain within the gradient diffusion framework. The different shapes for c(z) 
would, in that framework, indicate different distributions of the diffusivity 
£S(z). That is however an unlikely explanation, in so far as £j(z) should be 
closely related to the eddy viscosity and hence similar from experiment to 
experiment, because the flow conditions were rather similar. 

Furthermore, a similar set of concentration profiles measured over flat 
beds (Horikawa et al 1982) show the same gradual change of shape with 
increasing period, see Nielsen (1992) p271. 

We shall see that both the change from upward convex to upward concave 
for sediments with increasing settling velocity in the same flow and the 
analogous change for the same sand in flows with increasing periods can be 
modelled by the combined convection diffusion model. The shape differences 
are shown to be consequences of different relative importance of diffusive 
(small scale) and convective (large scale) mixing, and this is quantified in terms 
of the shape parameter S. The shape parameter is found to follow the rough, 
general rule 

'-% <6> 

where A is the wave induced particle semi excursion just above the boundary 
layer and r is the bed roughness. 

When S is small, the c-profiles tend to be upward convex, for large S 
they tend to be upward concave. 

The derivation of the form of the shape parameter (Nielsen 1992, p 249) is 
based on the solution to the time-averaged version 

w0c + e5—   =  pF(z) (7) 
a z 

of the continuity equation (3) in the simple case where es is a constant and 
F(z) = exp[-z/L]. In that case the time averaged concentration is given by 

c(z) = 3-lj-~VTe~Z/L + (l-T—l-7~r)e-WoZ/Zs\    zs/wjL4 1. Wo 11 - e-s/woL 1 - Zs/woL f 

(8) 

This solution shows that the relative importance of the diffusion solution 
(the last term) and the convection solution (the first term) is measured by the 
ratio £s/woL which may be seen as the ratio between the vertical scale zslw0 

of the pure diffusion solution and that (L) of the pure convection solution. The 
inverse of this ratio is the shape parameter : 
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S   =  ^k (9) 

To express the shape parameter in terms of basic flow parameters it is 
then noted that oscillatory boundary layers over rippled beds usually have a 
structure which is analogous to that of laminar oscillatory flow over a flat plate. 
That is, the eddy viscosity is constant, and its value is vt = 0.5 co z\ where 
z\ = 0.09 VrA , cf Nielsen (1992) p 40. Hence, assuming that es is 
proportional to vt and that the convective lengt scale L is proportional to z\ 
we are lead to the formula (6) which agrees with the observations in Figures 3 
and 4. That is, in both cases, the transition from upward convex to upward 
concave profiles happens with increasing values of S. 

It is interesting to note that experiments with suspensions of limited 
amounts of sand over artificial, fixed ripples give less pronounced c(z)-shape 
differences between coarse and fine sand fractions. Such experiments were 
reported by McFetridge & Nielsen (1985) and by van de Graff (1988). In the 
fixed-ripple-experiments, the c(z)-profiles agree more closely with the gradient 
diffusion model in the sense of Equation (5). It is believed to be due to the fact 
that when the sand supply at the bed is limited, the convective entrainment 
mechanism is less important. Most of the sand stays in suspension rather than 
being continually picked up and resuspended by the travelling lee vortices. The 
limiting case in this respect is pure wash load which is hence expected to obey 
the diffusion equation very closely. 

5. Time dependent concentrations in pure diffusion 
The time dependent diffusion equation 

dc dc       d  ,    dc. n nm 

dt dz       dz       dz 

which emerges from Equation (4) when the convective entrainment flux is zero, 
with the boundary conditions 

~esfe=/?W     forz = 0 (U) 
c(z,t) -* 0 for z -* oo 

was solved by Nielsen et al (1978). The solution is in the form of a Fourier 
series and based on separation of the variables. Each concentration component 

cn(z,t)  which is generated by the corresponding component pn{t) = Pn e""0 

of the pickup function was found to have the form 

c„(z,t) = J-^~e-a"-^eW(S>t (12) 
w0an 



SEDIMENT ENTRAINMENT MODELLING 3209 

where 

1        A       .mass 
an   =        + V- + i—y 

*< "> Wo 
(13) 

Alternatively Equation (12) may be written 

WoZ 

Cn 
WoZ 

(z,t)   =    {~e~Re{an}~Trcos(nwt-Arg{an}-Im{an}~)    (14) 
Wo |CC«| £s 

or with a slight rearrangement of the phase of the cosine function 

cnizjt)   =   -^-r e-^'W V cos [no, (t - 7w^ w* 2 )- Arg{*n} ] 

which   shows   that   in  a   diffusion  process   with   constant   diffusivity,   a 
concentration wave with radian frequency   «co   travels upwards with speed 

n co £s Wn =  r—7—r The behaviour of the solution (14) is illustrated in Figure 5 
w0 lm{a.nf 

for the case of p{t) ~ w0 cos6(co?/2). 

Figure  5:     Sediment  concentrations  at  different  levels  (0, „       and —) 
2 w0 w0' 

generated by the shown, periodic pickup function and pure gradient diffusion 
with constant diffusivity and we^/vvo = 1 
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6. Time dependent concentrations in pure convection 
For the case of purely convective entrainment we set  ES = 0  in Equation (4) 
and get 

dt dz 

For the simple case of F(z) = exp(-z/L)  this equation has a Fourier series 
solution, which corresponds to (12), with 

cn(z,t) = c„e-^/Lein(0t 
(.16) 

where 

Cn = 
Pn P/i 

w0 n      . noiL 
Pn + i  

W0 

and     pn   =   1 + i 
. noiL 

wc 

(17) 

cf Nielsen (1992) p 240. In analogy with (14) this solution can be written as 

-z/L cn(z,t)   -   \Cn\ e Z/L cos[nu(t-z/wc) + Arg{C„}] (18) 

4" 

3.5- p(t)/Wo 
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Figure 6: Sediment concentrations at different levels generated by the shown 
pickup function and purely convective entrainment. F(z) = exp(-z/L) and 
u>L/wc = 1. 
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This expression illustrates that all the harmonics of the pure convection 
solution decay at the same rate (as F(z) in general, and as exp(-z/L) in this 
particular case), and that all time lags grow at the same rate with z. Compared 
with the diffusion case, this corresponds to a greater shape similarity between 
time series at different elevations for the convective case. The nature of the 
convection solution is illustrated in Figure 6 for the case of 
p(t) ~ w0 cos (oit/2) (same as for the diffusion solution in Figure 5). 

7. Comparison with measured time series 
Consider the situation where simultaneous time series c(zt,t) have been 
measured at a number of levels, and one wishes to infer the nature of the 
sediment entrainment process. 

Before such an analysis is undertaken using the framework above one 
should note, that what has been measured by a point (or line) sensor and what is 
modelled above as c(zi,t) are not conceptually identical. The model assumes 
horizontal uniformity while the sensor samples from a spotted carpet of 
concentrations c(x,y,zi,t) which move back and forth with the waves. Thus, 
some of the time variation seen by the sensor is not modelled, and is indeed, not 
a feature of the horizontally averaged concentration c(zi,t). If the measurements 
have been taken close to a bed with strong topographical features the difference 
may be very significant. The problem may be amended (at least in part) by 
averaging over several sensors in the same horizontal plane or by using line 
sensors which average over one or more bedform lengths. 

Assume now that concentration time series c{zi,t) have been measured by 
such an array of sensors that the abovementioned "spotted carpet effect" is 
neutralised, and that that the corresponding Fourier series have been obtained 

00 oo 

c(zi,t)   =    \cn(zi,t)    =    c(zi) + 2Ai/i cosnat + Bi>n sinncot 

00 

=    c(zi) + y Ri,n cos(n(ot - cpi>n) (19) 
1 

where RyX = y/AJ,n + B\n   and   (pi;„ = tan l {—•). 

First consider the possibilities of deriving information about 
£S, p and F{z) from the time averaged concentrations. The time-averaged 
continuity equation (7) can, if c(z) and w0 are known, be seen as having two 
unknowns namely £s(z) and p F(z) . Thus, ts(z) and p F{z) cannot be 
determined from this equation alone. Additional information is needed. Such 
information can be sought along different lines. 

Firstly, it may be that   es(z)   can be inferred from knowledge about the 
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eddy viscosity vt. Indeed, one of the benefits of the combined convection 
diffusion model is that one should be able to assume identity between 
diffusivity and eddy viscosity. 

Alternatively, if concentration profiles ~c\(z) and ~cz(z) of two different 
sand sizes with settling velocities w\ and n>2 are known, we have at each level 
two equations (two versions of (7)) for finding the two unknowns es(z) and 
p F(z). Unfortunately, such detailed datasets are rare at present. 

Thirdly, as pointed out by Nielsen (1992) p 248, p F(z) may be inferred 
from the shape of c(z) alone for very coarse sand fractions. This is done 
simply by neglecting the second term in Equation (7). 

Most of the available data on suspended sediment concentrations contain 
too little detail for the analysis outlined above. Usually, the measured 
concentrations are compounded by a fairly wide distribution of grain sizes and 
no information is available about the contributions from individual, narrow size 
fractions. Furthermore, much of the time series data obtained with optical or 
acoustical instruments suffer from uncertainty about the absolute magnitude of 
the concentrations. 

However, some information can be extracted about the nature of the 
entrainment process even from such data. Assume that Fourier series of the 
form (19) have been obtained from at least two different levels and that the 
settling velocity distribution of the suspended material is narrow. Then the 
phase shifts and magnitudes of different Fourier components will show quite 
different developments in the two cases of pure gradient diffusion and purely 
convective entrainment. 

It may be seen from the expressions (12) and (13) that the magnitudes of 
different Fourier components decay at different rates in a pure diffusion process 
with constant diffusivity. The decay rates are given by 

d ln\Cn\ or    iw° nn\ —    =   -Re{a„}— (20) 
dz E.s 

which is an increasing function of the frequency na>. In contrast, in the case of 
purely convective entrainment, all components decay at the same rate, 
namely as F(z). For F(z)= exp (-z/L)   this means 

^  =   -l/L     for all „ (21) 
dz 

The growth of the phase lags cpn(z) are also different for the two types of 
processes. For the gradient diffusion process with constant diffusivity, Equation 
(14) tells us that 

d(Pn Wo . 
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while Equation (16) for the convection process with F(z)= exp (-z/L) gives 

d(pn 1 «co 
~dz~ - ~Im^L " "^ (23) 

corresponding to the same time lag for all components as was also indicated by 
Equation (18). 

If relative increments 

Y =     <p»(zj) - <p«(zj) 
/« c(Zj) - /n c(z,) 

of the phase shifts cp« are plotted against the relative increments 

„  _   ln\cn(zj)\ - ln\cn(zj)\   _    lnRj,n - InRj^ 
In c(zj) - In c(zi) In c(zj) - In c(zi) 

(24) 

(25) 

of In \cn\ as in Figure 7, the result for a pure diffusion process will trace the 
hyperbola branch Y = VZZ - 1 , x> 0 which is the locus for an in the 
complex plane. For the pure convection case, the points will trace the vertical 
lineZ= 1, y>0, which is the locus of p«. 
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Figure 7: The relative decay rates (X) and phase lag increments (Y) defined by 
(25) and (24) correspond respectively to the parameters a„ in pure diffusion 
with constant es and, to P„ for purely convective entrainment with F{z) = 
exp (-z/L). For details about   a„ see Nielsen (1979), p 131. 
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Finally, we note that information about the convective entrainment 
velocity wc may be found simply by considering the time differenc between 
the occurrence of identifiable peaks at different levels, cf Equation (18). If a 
peak arrives at zi at time tj and at zj at time tj, the corresponding wc in a 
purely convective entrainment process is given by 

wc tj - n 
(26) 

In contrast to the convective entraiment process considered above, the 
upward propagation speed of a concentration wave in a diffusive medium is 
frequency dependent as mentioned in connection with Equation (14). For 
constant diffusivity, the speed wn of a concentration wave with frequency noo 
is given by 

wn   = 
nco£s/Wo 
Im{an} 

(27) 

wn 

w0 

nu>Es/w0 

Im{an} 
n(i3Es/w0 

Im 
.A       . wooes 

+ V7 + 1—5- 
4 wl 

(28) 

the behaviour of which is illustrated in Figure 8. In the limit of w0 -* 0 i e 
for neutrally bouyant sediments or momentum, the value of wn is simply 
V2 n oj es. 

10a 

Figure 8: Dependence 

of w„ on niats/wo in 
a pure gradient 
diffusion process with 
constant diffusivity. 
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