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Abstract 

In order to solve water circulation and solute transport-diffusion problems in two-dimensional 
hydrodynamical systems a comprehensive simulator, composed by two finite element models, has been 
developed. In particular the first model, which is of semi-implicit kind, solves hydrodynamical shallow 
water equations whereas the second, which is an Eulearian-Lagrangian method (ELM), is based on the 
Modified Method of Characteristics (MMOC) combined with Galerkin finite element method.Semi- 
implicit procedures for hydrodynamical models are sometimes used with finite differences but are quite 
rare with finite elements. Nevertheless they have a lot of advantages compared to the others, 
principally linked to a considerable time saving. This is determined by the fact that the systems of 
equations in the unknown levels and velocities are uncoupled and the time step is not constrained by 
Courant-Friedrichs-Levy stability criterion.lt can be demonstrated that in the linear case the 
hydrodynamic model is indefinitely stable and good accuracy can be achieved for velocity fielAOn the 
other side, the proposed transport-dispersion model presents interesting features, among which the 
possibility to obtain good results in mass conservation and minimum numerical oscillations or grid 
orientation problems even under sharp front conditions. In these papers we shall discuss only the 
approximation method of transport-dispersion model, showing the theoretical fundamentals and some 
of its applications. 

Introduction 

The transport-dispersion equation constitutes one of the most difficult problem to solve by 
numerical methods, since the equation ranges from a parabolic to almost hyperbolic form, depending 
on the ratio of advection to dispersion, the Peclet number.In particular, when advection terms of the 
equation are dominant and concentration gradients very steep, using standard finite element many 
difficulties in the numerical solution arise, such as numerical dispersion, numerical oscillations, grid 
orientation influences and, even, mass conservation. 

To treat this problem many approximations have been developed, but, nevertheless, three broad 
classes of methods can be identified. 

The first group, based on using optimal test functions, is referred to as Optimal Spatial Methods 
(OMS).Examples of these approximations include the Quadratic Petrov-Galerkin Method (Christie et 
al., 1976; Bouloutas et al., 1988), the Optimal Test Function Method (OTF) (Celia et al., 1989). The 
limits of all these schemes consist in the variably upwinded nature of test functions which restrict the 
range of Peclet numbers allowable without numerical diffusion. 

A second broad class is constituted by the Eulerian-Lagrangian methods (ELM), which appear to 
overcome the problems inherent to advection-dominated transport conditions.The approximations in 
this class of schemes have, as their common element, a Lagrangian treatment of advection processes. 
Again there are many examples from literature, including Operator Splitting Method (Baptista, 1987; 
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Wheeler et al., 1988), Eulerian-Lagrangian Method with the Method of Characteristics (Pinder et 
al.,1977), Eulerian-Lagrangian Method with the Modified Method of Characteristics (Ewing et al. 
1984; Russel, 1985; Chiang et al., 1988).These methods can obtain significant reduction in numerical 
oscillations and in numerical diffusion even in presence of large Courant numbers.The principal 
drawbacks of ELM are, in some case, difficulty to conserve mass and to formulate general boundary 
conditions. However, material balance mass errors can be greatly reduced when an accurate velocity 
field from the solution of hydrodynamical equations is derived. 

The third broad class (ELLAM) combines the ideas of OTF and ELM, by using space-time test 
functions satisfying a local adjoint condition that introduces a Lagrangian frame of reference (Celia et 
al., 1989; Zisman, 1988; Russel, 1990). Among other things, ELLAM schemes allow the solution of 
transport-dispersion equation in the conservative form unlike, for example, ELM methods where the 
obtained solution concerns the non-conservative form of the same equation. For this reason sometimes 
ELLAM approximations can achieve a better result in mass conservation than ELM themselves, even 
if at the expense of a non- irrilevant increase of computational effort. 

Taking into account all these considerations, these papers present a comprehensive analysis of a 
numerical method adopting a Eulerian-Langrangian Method with the Modified Method of 
Characteristics (MMOC), with interesting proceedings to evaluate the advection term of diffusion 
equationPurthermore two brief reports, regarding a numerical validation and a real case application, are 
presented. 

Governing  equation 

The general solute diffusion equation in anon-conservative form has been derived as follows: 
9c 1 
— + v-Vc--V(hDVc) = s (1) 
9t h 

where 

c       solute concentration, [kg/m^]; 

D      dispersion tensor, [nr/s]; 
v       velocity vector, [m/s]; 
h       water depth, [m]   (h = Z-Zf, where Z, Zf are surface and bottom levels.relative to a reference 

plane); 

s       solute source or sink, [(kg/m^)/s]. 

The dispersion tensor D in two-dimensional flow fields is defined as (Peaceman, 1966): 

+ a, 
vu    v' \P*   DJ C|v| 

where 

Dffl   molecular isotropic diffusion coefficient, [rn^/s]; 

I unit tensor, dimensionless; 
oij longitudinal dispersion coefficient, dimensionless; 
at transversal dispersion coefficient, dimensionless; 

u,v velocity components along coordinate axes, [m/s]; 

g gravitational constant, [m/s^]; 

C Chezy coefficient, [m^/s]. 

-vu ,, 
(2) -vu     u    " 
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The factors which determine diffusion processes are mainly two: the first, of advection kind, 
characterized by transport for the fluid base motion; the second, of dispersive nature, linked to whirling 
motions of turbulent origin internal to fluid masses. 

Indeed equation (1) would range from a hyperbolic-type, if the hydrodynamic dispersion were 
null, to a parabolic-type, if the process were purely dispersive.Numerical proceedings which permit to 
solve suitably hyperbolic differential equations differ deeply from those applied in case of parabolic- 
type equations.lt is well known that solution for hyperbolic-type equations can be represented from the 
initial data propagating over well-defined paths, called characteristics, over the surface in direction of 
flow. The solution of the overall equation (1) can be viewed as spreading or dispersion away from 
these characteristic curves, along which solute concentration is a smooth function (Douglas and 
Russel, 1982). 

With regard to this, consider a domain ii delimited by a boundary T where Dirichlet or null-flux 
boundary conditions are applied. 

Defined the unit vector x(x,t) in the characteristic direction, the directional derivative along a 

characteristic curve in x at time t can be evaluated through the expression: 
3'       i     fa 

9x ovp+ir^+9-v| (3) 

where v is the local velocity vector. 

If we substitute expression (3) in equation (1), we will obtain: 

(|vP+l)"2 — -iv(hDVc) = s (4) 
dz    h 

which constitutes the non-divergence form of diffusion equation. 

Time discretization  of diffusion equation 

Many methods, based on characteristics, fix a point at the current time level and evaluate the 
final position at the advanced time level. MMOC method takes the opposite view, fixing a point at the 

advanced time levell and asking where it came from at the current time levell .Thus the solution 
grid at the advanced time level is controlled by the method, not the flow, so allowing a fixed finite 
element mesh to use. 

In the mathematical model the derivative along characteristic curves can be approximated by a 
back-ward finite difference procedure, obtaining in this way: 
/.   „        \uidc       ,.   „        y/j c(x,t"')-c(x*,t°) 

v   +1     — = (v 2+l)    •; * — ^TTT + OCAx) (5) 
9T [(*-*) +(t-t)J 

If we would assign a precise physical meaning to the problem, x* might be interpreted as the 

initial position at time [   where a particle, following the flow line, will arrive at time t 

from.During the time interval At within l and * , the relation linking x>x can be achieved, as first 
approximation, through the following cinematic expression: 
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x* = x~v-At + 0(At2) (6) 

The backward difference in time makes the procedure implicit in nature and (5) becomes: 

0M.+1y"J£.«frtM)-c(r,f) 
3x At 

The final form of the diffusion equation to solve, by using Galerkin weighted residual method, is 
thus the following (Neuman, 1981; 1983): 
c(x,t"*')-c(x",t")    1      / „.-> 
-^ '- !-^-i—V. bDVc"'   =s' (8) 

At h 
Considering equation (8), it can be noted that, in order to avoid the appearance of an artificial 

numerical diffusion mainly connected to large time steps often utilized in numerical simulations, the 
n+l 

dispersion term is computed at advanced time levell   . 

Before proceeding to the mathematical formulation of the finite element method, it is necessary 
to define some notations. First of all denote the following surface and line integrals: 

(u,v) = J(u-v)dQ 
n 

< u,v >= J(u- v)dT 
r 

where center dot is the inner product. Let H" (ii)be the Hilbert space of n-order defined in Q.. Let also 

Hn (Q.\ ip   'be the Hilbert subspace of n-order defined in Q of functions ueHn(Q) which vanish on 
boundary r  where Dirichlet boundary conditions are applied. 

The variational problem corresponding to differential equation (8), subject to boundary 
conditions just pointed out, is then the following: 

(9) 
fc(x,t"')-c(x',t')     1       , „,.. ) / ,   NX 
-i '- * '- V(hDVc"')-s',\|/   =0        (VfeHri(Q)) 

Integrating by parts against weight function \|/ with Green formulas, we will obtain the 
Galerkin form of variational problem: 

fc(\t"')-c(xl")     \    1 
_L-I—I L_L_Z,¥  + -(hD• Vc"',Vy) -(s',f)- < DVc • n,f >= 0  (VveHri(n))  (10) 

Consider now a base <Pj (i = 1,2 N) of a subspace KN<=Hrt(ii) and suppose unknown 

concentration c and weight function y to be approximated by C and <f{ respectively, belonging to 

such subspace KN; then equation (10) provides the following N linear equations in the unknown 

concentration Cn+1=C(x,t,,+1): 

AT /<Pi + -(hDVC"+1,V(pi)-(s',(pi)-<-5i-,(pi>=0      (i=l,2 N) (11) 

where qa is the flux on the boundary, for unit length, of only dispersive nature. 

Since, for hypothesis, boundary flux is null, developing equation (11) in its full form we will 
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obtain after all: 
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„ 3cn+1     acn+1 

DM-r +Diy-r— 
dx '    dy 

3<p, 

'3x 

„ acn+1 „ ac"1 

3y 
•=(c(r,t'1)>(pi)+(S,,(Pi)At       (i=l,2 N) (12) 

Equation (12) completes the procedure which combines the modified method of characteristics 

with finite element Galerkin method for the simulation of solute transport-dispersion equation.The 

integral relative to the function CCxV) is computed through the well known quadrature formulas in a 

approximated way, since x* may belong to several elements as x runs over a single elementFinally 
note that, being advection term C(x°,t") moved to the right side of (12), the system of linear 
equations is symmetric and positive definite. 

Backtracking   algorithm 

The integrals in (12) are standard in finite element schemes except for the inner product relative 

to C(x*,tD).The point %• does not lie, in general, at a precise node of the mesh, since it becomes 
necessary to utilize some particular procedure for its determination.In particular the integration 

involving C(x',t°) is calculated by means of Gauss quadrature formulas, with a number of integration 
points in each element variable from three to twelve, in function of concentration front steepness and 
relative required solution precision. Consider then a point P(Xj) within a finite element Ts at time 

tn+1 (fig. 1). Actually, even if particle path joining points P(xirt
n+1) and P(Xj',tn) could be 

determined, as first approximation, from equation (6) using the same time step considered for 
integration of overall diffusion equation, mainly for increasing method's precision particle path is 

calculated with a time step At shorter. 

P =- 

lAf 
At 

Fig. 1 -        Path of a particle along a characteristic curve in the hydrodynamic system during a 

integration time At of dif-fusion equation. Integration time step At of characteristics is 
often much less than At, with the aim to increase method accuracy. 

The particular attention reserved to the evaluation of corresponding points P(xi,t
n+1)  P(xi",tn) 
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resides fundamentally in the aim to evaluate correctly the advection term of transport-dispersion 
equation, fraction certainly of crucial importance especially in coastal and lagoon problems. 

The cinematic differential equations governing particle motion are the following: 

—=u(x,t)   ,   ^=v(x\t) (13) 
dt     v    ;        dt     v    ; K   ' 

with initial conditions x=Xj at t = tn+1 The velocities u(x,t), v(x,t)inside a generic m-node finite 

element Ts will be calculated through the expressions: 

I (W) 
v(x.t)=ZJvJ(t;Tg)^(x;Tg) 

where Uj/Vj are j-th node velocities and ty j-th node shape function within an element Ts. 

Generally nodal velocities uj/vj from hydrodynamical simulation are stored only at discreet 

regular intervals, so that it is necessary some type of interpolation to determine velocity values at each 
time, as required by integration of (13).In this case, to interpolate velocities, linear, quadratic and cubic 
polynomials are used, depending on number of velocity values available for such node in that particular 
phase of hydrodynamical simulation. 

Boundary   conditions 

As we pointed out, one of the principal drawbacks of ELM procedures is the difficulty of 
formulating them for general boundary conditions. Indeed, during the early development of modified 
method of characteristics, a no-flow boundary condition was assumed for all boundaries (Neuman, 
1981). Actually these schemes are suitable to reproduce both Dirichlet conditions at open boundaries 
Tj (1° type) and no-flow conditions at closed boundaries T3 (III0 type). 

For what concerns 1° type conditions, it is necessary to distinguish, first of all, between inflow 
and outflow at open boundary Tt .During inflow boundary conditions are imposed upon the system 
from the outside, so being sufficient to assign directly the concentration values on boundary nodes.The 
situation at an outflow boundary is altogether different, since boundary conditions are no longer 
influenced from the outside. In this case, neglecting dispersion and so making an approximation quite 
often reasonable in this kind of problems, the concentration value corresponds with that of the particle 
arriving in a boundary node from inside the system.Therefore it needs only to determine initial position 
of the particle by the backtracking procedure. 

At last in the case of 111° type condition, when x* reaches across the boundary, the 
hydrodynamical velocity field is used to reflect back the particle, implicitly imposing a no-flow 
boundary condition. 



3074 COASTAL ENGINEERING 1992 

Model   verification 

The following presents an analysis of numerical results of the model.lt is important to 
emphasize that, mainly in order to avoid completely the presence of negative concentrations, has been 
developed a particular procedure able to eliminate negative values and to conserve exacUy solute masses 
without introducing any significant numerical diffusion, as it will be proved later in the numerical 
tests. 

The model has been applied to cases from low to high Peclet numbers, in order to observe 
model's ability in handling steep concentration gradients. The diffusion equation was solved with a 2-D 
grid consisting of right isosceles 3-node elements of small legs Ax, where Ax was nodal 
spacing.Independent parameters include Peclet number Pe = u Ax / D, Courant number Cu = u At/Ax 

and the number of elements N which the source is distributed in flow direction over. 

It was analysed the following two sets, whose analytical solutions are known, having assumed 
in all cases seven integration points for each triangular element, utilized in Gauss quadrature formulas 
for integration of advection terms. 

Instantaneous source in a uniform flow 

The base one-dimensional equation is the following : 
3c 3c 32c „ 
—+u-—D—-=0 
3t     3x     3x2 

with initial condition c(x)=C„-exp(-a(|x-x0|/NAx) for t=0. 

From numerous tests, mass and phase appear exact for all runs and numerical diffusion, even 
with a very concentrated source and high Pe , is quite negligible.In the case of a particularly steep 
gradient (N=2), with parameters Cu =0.48 and Pe = °°, results are shown in Fig.2 for different time 
steps (0,10,20,30,40 and 50 At). 

Breakthrough distribution in a uniform flow 

The same analysis was carried for the case of a breakthrough distribution in a uniform flow. 

The graphics in Fig.3 still show the case of a particularly steep gradient (N=3), Cu =0.48 and 
Pe = oo for different time steps (0,10,20,30,40 and 50 At) it is possible to note only small 
oscillations in numerical results, however quickly damped in space, on either edges of the breakthrough 
curve. However, by numerical experiences, their maximum value and influence tends to decrease with 
increasing N and decreasing Pe. 

Model application to Barbamarco lagoon (Rovigo - ITALY) 

Among other things, the model has been set-up and applied to examine diffusion phenomena on 
Barbamarco lagoon, which is a small coastal lagoon on Delta Po.The hydrodynamical model has been 
verified on the base of tidal level measurements, caught in four gages all around the lagoon, and 
contemporary discharges, flowing through the two mouths and a controlled gate dug into Po river. 

Becouse, unfortunately, there were no data measurements relating to diffusion phenomena in the 
lagoon, to evaluate the effectiveness of the projected canal network to dredge the results of the model 
were compared with those referring to real situation supposing a instantaneous source release of a 
conservative solute in different zones of hydrodynamical system, especially where water exchange is 
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particularly difficult. 

The most interesting result is relative to a solute released near West Mouth (fig. 4). In fig. 4a 
the finite element mesh of Barbamarco lagoon and the Zoom of the zone interested to conservative 
solute diffusion are represented, while in fig. 4b the initial concentration distribution is shown. The 
following two pictures (fig. 4c, 4d) illustrate the distribution evolution during the first 12 hours, with 
6 hours' time between representations. Finally the last four pictures (fig. 5a, 5b, 5c, 5d), which report 
the distribution isolines relative to four days from the beginning of hydrodynamical simulation, show 
the effects of slow plume migration towards East Mouth, so confirming the results obtained with 
hydrodynamical model where a residual current in the same direction, equal to roughly 10% of total 
volume exchanged during a tidal cicle, was noted. 

Conclusion 

A comprehensive simulator composed by two finite element models, the first solving 
hydrodynamical shallow water equations whereas the second the diffusion equation, has been developed. 
However, in this report only the diffusion model, based on the Modified Method of Characteristics 
(MMOC), is presented. 

The important feature of the MMOC procedure is tracking the solution backward in time along 
the characteristics, in contrast to the forward front tracking or moving point methods. Thus the 
solution grid at the advanced time is controlled by the method, not the flow, and therefore a fixed grid 
system can be used for mathematical simulations. Among other advantages algebraic system is 
symmetric and positive definite. 

Since diffusion equation is solved in a non-divergence form, it is required a very accurate velocity 
field to maintain good numerical material balance.On its hand, the two levels semi-implicit 
hydrodynamical model seems to furnish a solution accurate enough to assure overall mass 
conservation. 

The accuracy of the model is analyzed through a comparison with analytical solutions. Good 
agreement between model results and analytical solutions is demonstrated. Furthermore the 
experiments demonstrate that large time steps can be taken without sacrificing much of MMOC 
model's solution accuracy. However, the model does require to consider a sufficient number of Gauss 
points in each finite element to resolve sharp concentration gradients increasing, in this case, 
computational effort. 
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FIG. 2 - Instantaneous source in a unifonn flow : comparison between analytical and numerical 
solulions in correspondence to different time steps [0 At (fig.2a), 10 At (fig.2b), 20 At (fig.2c), 30 
At (fig.2d), 40 At (fig.2e), 50 At (fig.2f)] with parameter values N=2, Cu =0.48 and Pe = °°. 
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FIG. 3 - Breakthrough distribution in a uniform flow : comparison between analytical and numerical 
solutions in correspondence to different time steps [0 At (fig.3a), 10 At (fig.3b), 20 At (fig.3c), 30 At 

(fig.3d), 40 At (fig.3e), 50 At (fig.3f)] witn parameter values N=2, Cu =0.48 and Pe = °°. 
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Fig. 4a - Barbamarco lagoon on Delta Po : 
finite element mesh 

Fig. 4b : Barbamarco Lagoon on Delta Po : 
representation of isoconcentrotion lines for a 

instantaneous source of solute released near West 
Mouth since 2 (h] from the beginning of simulation 

Fig. 4c: Barbamarco Lagoon on Delta Po: 
representation of isoconcentralion lines for a 

instantaneous source of solute released near West 
Mouth since 8 [hj from the beginning of simulation 

Fig. 4d: Barbamarco Lagoon on Delta Po: 
representation of isoconccntration lines for a 

instantaneous source of solute released near West 
Mouth since 14 [b] from the beginning of simulation 
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Fig. 5a : Barbamarco Lagoon on Delta Po : 
representation of isoconcentration lines for a 

instantaneous source of solute released near West 
Mouth since 1 [d] from the beginning of simulation 

Fig. 5b : Barbamarco Lagoon on Delta Po : 
representation of Isoconcentration lines for a 

instantaneous source of solute released near West 
Mouth since 2 [d] from the beginning of simulation 

Fig. 5c: Barbamarco Lagoon on Delta Po : 
representation of isoconcentration lines for a 

instantaneous source of solute released near West 
Mouth since 3 [d] from the beginning of simulation 

Fig. 5d : Barbamarco Lagoon on Delta Po : 
representation of isoconcentration lines for a 

instantaneous source of solute released near West 
Mouth since 4 [d] from the beginning of simulation 




