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QUASI-TURBULENT BOUNDARY LAYER OF OSCILLATING FLOW OVER RIPPLES 
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and 
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ABSTRACT 

When the surface waves propagate in shallow water region, 
the bottom boundary layer may be turbulent because of sand ripples 
or other kind of roughness of sea bed. But before the flow becomes 
fully developed turbulence, there is a state, in a certain range of 
the Reynolds number, in which the flow is still laminar but has 
separation and complex structure of vortex. This is termed as 
quasi-turburent flow in the present paper. The flow structure of 
this boundary layer affects the mass transport and sedimataion. 

In the present paper, we use a numerical method to solve the 
boundary layer of oscillatary flow over ripples. When we discuss the 
overall wave field, the sand ripples can be considered as ruoghness 
of the bollom and the flow with the separation and the vortex can be 
considered as disturbance around mean flow. Therefore, to discuss 
the averaged flow structure of wave field, the mass transport for 
example, it is necessary to know some kind of statistical properties 
of the boundary layer. A particular attention is paid to investigate 
the mean velocity, the Reynolds stress and turbulent viscosity. It is 
found that the turbulent viscosity varies along the time during the 
period of the oscillation. And not only it diverses as the space 
derivative of the mean velocity diminishes, but also it has a complex 
distribution in space and time. 
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1. INTRODUCTION 

Sand ripples are commonly observed on the sea bed in 
coastal region, which produce complex flow structures near the bed 
under the influence of the wave motions. This flow structures 
strongly affect to the development of ripples, the mass transport 
inside and outside the boundary layer, and the sedimentation near 
the bed. 

In the case where the flow near the bed is fully developed 
turbulence, Longuet-Higgins(1958) analized the Eularian mean 
velocity and the mass transport velocity just outside the boundary 
layer. He concluded that the Eularian mean velocity and the mass 
transport are independent to the distribution of the turbulent 
viscosity. In his analysis it is assumed that the local turbulent 
viscosity is constant along with the time during the wave period. But 
the validity of this assumption seems to be questionable. 
Furthermore, when we discuss the mass transport inside the boundary 
layer, we need to know the distribution of the turbulent viscosity 
even if Longuet-Higgins' assumption is correct. 

On the natural sea bed, the wave length of the ripples is 
very short compared with that of the surface wave. Therefore to 
investigate the flow structure inside the boundary layer, 
horizontally oscillating flow can be considered as a first 
approximation for the ambient flow. Blondeaux and Vittori(1991) 
investigated this flow structure in a numerical approach. Hamanaka 
and Sato(1991) also proposed a similar numerical method 
independently using the spectral method and the finite differential 
scheme. Both of them confirmed that their methods describe the 
separations and large vortex structures. 

In the present paper, we use the same numerical method of 
Hamanaka and Sato(1991) and solve the oscillatory boundary layer on 
ripples under the quasi-turbulence condition. A particular attention 
is paid to investigate the mean velocity, the Reynolds stress and the 
turbulent viscosity on the same flow conditions mentioned above. 
Spatial averaging procedure is taken over the wave length of ripple. 
The turbulent viscosity is found to be dependent on time during the 
period of the oscillating flow. Not only it diverses as the space 
derivative of the mean velocity diminishes, but also it has a complex 
pattern of its distribution in space and time. A similar result can be 
seen in the experimental measurement of Sleath (1987), in the case of 
fully developed turbulent boundary layer. This fact suggests that 

Longuet-Higgins' assumption mentioned above is not correct. A 
example   of   this    incorrectness   is  seen  in   the  difference  between 
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Tanaka's model and   measurement (Tanaka, 1989). 

2. FORMULATION OF THE PROBLEM 

In the present paper, we follow the same numerical approach 
of Hamanaka and Sato (1991). We consider two dimensional viscous flow 
oscillating over a periodic wavy bottom and assume that the wavy 
bottom vary sinusoidally to the direction of x axis. The vorticity 
equation and the Poisson equation for the stream function is 
employed as the   governing equation. 

U> x    = <t> :<G) y— </> v (O x   + V (&> x x   + (Wyy)  (1) 

<j> x:<   + 0 yy   = — (i)  (2) 

where,   w * is vorticity,   <j> * is stream function and  v * is kinematic 
viscosity. 
The flow outside the boundary layer is given by 

u * = a * A * s i n (a * t *)        ,       v * = 0  (3) 

where, u * and v * are horizontal and vertical velocity components 
outside the boundary layer. And, a * is angular frequency, A * is 
amplitude of velocity. 

A new coordinate system is introduced. 

x*=F*-    a*exp  (-k*>?*)    sin(k'f') 
  (4) 

y *=>?*+    a*exp(-k*)7*)    cos(k*f*) 

where,    k *   and   a *   are    wave number and  amplitude of the  ripple 
respectively. The ripple profile is mapped into the line t] *= 0 . 
All variables are nondimensionlized with k * and a *. 

= kf ,     7j = k   v ,      t=(jt 

(5) 
. k « 6) * k *2 

<l> = —*- 0 ,     o)= —.r .     J> = ---*~ v a a a 

Then, the governing equations (1) and (2) are represented in ( 
F , v ) coordinate system. 
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«t = J"'   { - <fi    w p+ 0g a) J]
+1J(<<)gg + a>

vv^       (6) 

<l> % % + <l> v n     =-Jw  (7) 

where,   J  is the Jacobian of transformation by Eq. (4) : 

J = 1 ~ 2 a   exp   (- )7)    cos(f)+     a"    exp   (-??)— (8) 

J_1= 1/J 

The boundary conditions on the bottom are 

<l>=<I>g=<l>=Q       on       v =   0  (9) 

and outside the boundary layer, 

0£-*O,0-»Asin(t)     ,     u>-*0     at r/ -»«>         (10) 

The parameters a , A and v  specify this problem. 
The parameter a determines the bottom topography. When a is 

constant, the similarity law suggests two dimensionless numbers, 
Reynolds number (Re) and Strouhal number (S). Let the representative 
variable of the length scale be the wave length of the ripple profile 
( L *) , the time scale, the period of oscillation (T *) , and the 
velocity, the maximum velocity of oscillation (a * A*), then, Reynolds 
number (Re) and Strouhal number (S) are described as follows. 

a*A*L*      A       „   (7*A*T* 
Re=  ^ = 2K—        ,       S= --»- =A   (11) 

v ' v L 

Instead of solving this problem directly, we introduce the 
Fourier series expansion for <fi  and a> along the axis f , 

<!> = £ f m e x p   ( i m f )      ,     w = Sgmexp   (iraf)       (12) 

Substituting (12) into (7) , we obtain equation (13). 

—_ m- f m = _ H1T1  (13) 
an" 
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where,   J u> = X Hm e lm 

In general, there can be considered two way to treat the 
vorticity equation. When the wave number space (Fourier coefficients) 
is used, the convolution sum is needed to calculate the nonlinear 
terms. And when the physical space is used, the inverse Fourier 
transform is needed in each time step. In the present paper, the 
latter method is used. 

We introduce a new coordinate system in which finer meshes 
can be defined near the bottom, and coarser ones in the upper 
region. 

exp   (bf)     - 1 
exp(b)    -1 

The boundary condition for (12) is on the bottom 

f m= 0      on      r = 0     (15) 

and outside the boundary layer 

-?J.   -?J•   =  Asln(t)   ,  m=0    on  r = j    (16) 
a i)       3  £" 0       ,  m =^ 0 

for the vorticity equation 

o) = 0       on       r = 1  (17) 

The vorticity on the upper boundary is assumed to be zero, 
and on the bottom it is given by Thorn's scheme with the bottom 
condition of the stream function ( Roache 1972 ). 

T_,   .3 r   '2      2 0( An „     n .... 
<o = - J       ( )  on      f = 0       (18) 

3 v At 

3. NUMERICAL PROCEDURE 

The equation (6) and (13) are solved numerically by use of a 
forward difference scheme for the time derivative, and a central 
difference scheme for the spatial derivative. The vorticity at new 
time step is obtained through (6) with three inverse Fourier 
transform   in   the   right   hand   side   of   the   equation.   The   Fourier 



OSCILLATING FLOW BOUNDARY LAYER 2429 

coefficient of the stream function is obtained through (13) with 
Fourier transform of the right hand side. Then, the vorticity on the 
bottom is obtained through (18). In this procedure, Fourier transform 
and inverse Fourier transform are needed but FFT algorithm may be 
available in any computer system. 

In this paper, the parameters a and A are fixed on 0.5 and 
5.0, and several calculations is carried out with the several 
different value of v . The value of A is selected as the moving 
distance of water particles by oscillating flow becomes to a wave 
length of the ripple. The computation starts from the fluid at rest. 

Table   1.    gives   the   computational   conditions   which   are 
discussed in this paper.  M and N are the numbers of grids on f -axis 
and  £ -axis respectively. NT is time step number of one period of the 
oscillation. 
Therefore, the time step   A t  becomes 

A t = 2 i/NT 

RUN M N Tj   T b a A V Re NT cycle 

4 64 32 5 3 0.5 5 0.05 630 3200 3 

23 64 90 7 3 0.5 5 0.03 1050 12000 5 

27 64 90 10 3 0.5 5 0.02 1570 12000 6 

Table 1.   Computational conditions 

4. DISCUSSION OF RESULTS 

In this problem , three nondimentional parameters a , A and 
v specify the flow. In the present calculations, a and A are fixed 
while v takes different values as shown in the table 1. This means 
the Strouhal number remains constant while the Reynolds number 
varies in the different cases. The flow with these conditions can be 
confirmed to be stable from the experimental measurements by Du Toit 
and Sleath (1981). 

Fig. 1 shows the contours of vorticity of the flow with the 
condition of RUN 4 in the table 1, after three cycles from the rest. 
(a)-(h) in Fig. 1 correspond to the eight successive phases in one 
cycle. The fluid outside the boundary layer flows from the left to 
the  right during the first half cycle and reverses during the next 
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half cycle. The bold lines show the positive vorticity ( 
counter-clockwise ) and the fine lines show the negative one ( 
clockwise ). The ambient flow is accelerated in (a), takes maximum 
velocity in (b), is decelerated in (c) and rests in (d). 

Fig. 2 shows the contours of stream function of the same flow 
of Fig. 1. It is found that both the separation on the lee side of the 
crest and the large vortex shed from the bottom are well described 
in this numerical method. In Fig. 1 and Fig. 2, corresponding flows in 
each half cycle ((a)-(e) and (b)-(f) etc.) are almost symmetric. This 
means that almost stationary oscillating flow is obtained. 
Furthermore, in the phase of the deceleration larger separation 
structure is formed than in the acceleration phase. When the ambient 
flow reverses its direction, a cloud of vorticity is shed from the 
bottom and drifts with the ambient flow diminishing the intensity of 
its vorticity. 

As mentioned in the section 1, the wave length of the ripples 
is very short compared with that of the surface wave in normal 
coastal region. Therefore the ripples can be considered as bottom 
roughness. In this sense, it would be reasonable to investigate the 
Reynolds stress and the turbulent viscosity for mean flow. In 
general, the averaging procedure can be taken in time, in phase or in 
space. But to investigate Longuet-Higgins' assumption mentioned in 
section 1, it will be suitable to use the spatial averaging procedure 
where the mean velocity is calculated from the averaged velocity 
over a wave length of the ripple. Then, the Reynolds stress Ry and 
the turbulent viscosity v T are given by, 

Ry=-<u*  v'>  (21) 

v T= - < u ' v ' >/ -~~  (22) d y 
where 

u = U + u',U=<u>  (23) 

and < > denotes the average over a wave length. 
Fig. 3 shows the distribution of the mean horizontal 

velocity of RUN 4. Fig. 4 and Fig. 5 show the distribution of the 
Reynolds stress and the turbulent viscosity of the same flow . From 
Fig. 5, the turbulent viscosity is found to vary its value during the 
period of oscillation. And not only it has complex distributions but 
also diverges in different ways ( in positive or negative ) as the 
space derivative of mean velocity is diminishes. A similar result can 
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be   seen    in   the   experimental   measurement   in   the   case   of   fully 
developed turbulent boundary layer (Sleath,1987). 

Fig. 6 shows the contours of vorticity in the case of RUN 23. 
Comparing with Fig. 1, it is found that when the Reynolds number 
increases the intensity of vorticity becomes higher and its 
distribution gets much more complexity and the cloud of vortex 
drifts longer time with the ambient flow. 

Fig. 7 and Fig. 8 show the mean velocity and the Reynolds 
stress of the flow of Fig. 6. 

The fundamental characteristics are the same of those of RUN 
4. But it can be seen from these figures that the phase shifts in the 
mean velocity and the Reynolds stress appears at much higher 
position because of the development of the boundary layer. The 
turbulent viscosity of this flow also has the same characteristics of 
RUN 4. 

Let us discuss the detail of time dependence of the 
characteristics of boundary layer. Fig. 9(a) shows the contours of 
mean velocity of RUN 4 during one cycle. The bold lines denote the 
positive contours and the fine ones, negative ones. The height at 
which the mean velocity takes the maximum at each phase rises up 
lineally with time in each half cycle. A similar result can be seen in 
the turbulent intensity of fully developed turbulent oscillatory 
flow from the experimental measurement by Sleath (1987). 

Fig. 9(b) shows the contours of the Reynolds stress of RUN 4. 
The Reynolds stress has two peaks in each half cycle and its 
intensity at the acceleration phase is higher than that at the 
deceleration phase. 

Fig. 9(c) shows the contours of the turbulent viscosity of 
RUN 4. The zigzagged line where the positive contour and negative 
contour are close each other indicates the divergence of the 
turbulent viscosity. The similar result can be seen in fully 
developed turbulent flow (Sleath, 1987). 

Fig. 10 is for RUN 23 and Fig. 11 is for RUN 27, corresponding 
to Fig 9 for RUN 4. As expected from the previous discussion, as the 
Reynolds number increases the distribution of each valuables gets 
higher complexity. Also it is commonly seen that the turbulent 
viscosity strongly depends on time and not only it has positive and 
negative value but also it diverses positive way and negative way. 
This result suggests that the Longuet-Higgins' assumption is 
incorrect. A effect of this incorrectness is seen in the difference 
between Tanaka's model and measurement (Tanaka, 1989). He proposed a 
turbulent viscosity model which depends only to the height from the 
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bottom, and estimated the mean velocity in a fully developed 
turbulent oscillatory flow. Significant differences can be seen 
around the peak points of the mean velocity distributions. 

5. CONCLUSION 

The flow structures of oscillatory boundary layer on rippled 
bottom are investigated in a numerical method. It is confirmed that 
the turbulent viscosity depends on time and dlverses in positive and 
negative. This suggests that the Longuet-Higglns' assumption is 
unreasonable and consequently the Eularian steady flow and the mass 
transport under the wave motion should be reinvestigated. 
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Fig.l   Vorticity contours (Run 4)   Fig. 2   Stream function contours 

A w = 5 (Run 4) : A <f> = 5 

(a):2i *l/8 ,(b):2w *2/8 ,(c):2rc *3/8 ,(d):2ff *4/8 
(e):27r*5/8 ,(f):2/r*6/8 ,(g):2w*7/8 ,(h):2w*8/8 

Fig.3   Distributions of mean fluid    Fig.4   Distributions of Reynolds 

velocity (U)   (Run 4) stress (Ry)   (Run 4) 

(a) ~ (h) see Fig.2 (a) ~ (h) see Fig.2 
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5. U! 5, (bl [el 5 (d) 

Fig. 5   Distributions of turbulent      ($) 
viscocity ( vT )   (Run 4) 
(a)~(h) see Fig.2 

Fig. 6   Vorticity contours (Run 23) 
A w = 5 : (a) ~ (h) see Fig. 2 

Fig. 7   Distributions of mean fluid     Fig. 8   Distributions of Reynolds 
velocity (U)   (Run 23) stress (Ry)   (Run 23) 
(a) ~ (h) see Fig. 2 (a) ~ (h) see Fig. 2 
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(a)   5 ^ 

2*PI 

(b )   5 

2*PI 

(c )    5 

2*P1 

Fig.9   Contours of (a) :mean fluid velocity,(b) :Reynolds stress 
and (c) :turbulent viscosity   (Run 4) 
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(a)    5 

2*PI 

(b )    5 

2*PI 

(c )    5 T 

2*p; 

Fig. 10   Contours of (a) :mean fluid velocity,(b) :Reynolds stress 
and (c) :turbulent viscosity   (Run 23) 
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(a)   5 T 

(b )   5 

2*PI 

2*PI 

J2^ 
H H 

PI 2*P1 

Fig. 11   Contours of (a) :mean fluid velocity,(b) :Reynolds stress 
and (c) : turbulent viscosity   (Run 27) 




