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Abstract 

Sea level oscillations related to astronomical and meteorological tides in the 
Lagoon of Venice are analysed in order to find evidence of a possible chaotic 
nature of the phenomenon. On the basis of the analysis of the signal spectrum 
and by considering the values of the correlation dimension and of the largest 
Lyapunov coefficient of the attractor of the system, it is possible to infer that tidal 
oscillations inside the Lagoon of Venice are the result of deterministic dynamics, 
i.e. of a chaotic system characterized by few degrees of freedom. In the second 
part of the paper, taking advantage of the chaotic nature of the system, Farmer 
& Sidorowich's (1987) algorithm is used in order to make predictions of the time 
development of the system. 

Introduction 

The time development of dynamic variables of natural systems often shows 
random oscillations which sometimes are superimposed on a regular and 
predictable signal. Such behaviour can be the result either of a stochastic or 
deterministic non-linear process, highly influenced by initial conditions known in 
literature as "deterministic chaos". In the latter case, the time development of 
the system is somehow similar to that of a stochastic process even though from 
a mathematical point of view its dynamics are entirely deterministic. 

From a practical point of view, the main difference between a stochastic 
process and a process showing deterministic dynamics is the different number 
of degrees of freedom necessary to describe the state of the system. In fact, 
when a system shows a chaotic behaviour, its dynamics can be described using a 
limited number of degrees of freedom. In other words, the time development of 
the system can be obtained by integrating a small number of ordinary differential 
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equations. This result is not applicable to the behaviour of stochastic systems 
which are characterized by an infinite number of degrees of freedom. The detailed 
description of such systems is extremely complex and stochastic or statistical 
methods are recommended for the study of the time development of the system. 

Recent studies have shown the existence of deterministic chaos in the time 
development of climate variables such as wind velocity (Tsionis & Eisner (1989)), 
atmospheric pressure (Henderson & Wells (1988)), rainfall (Sharifi, Georgakakos 
& Rodriguez-Iturbe (1990)). Those studies have opened up new fields for the 
study of the predictability of natural events. 

In this paper, the time oscillations of water elevation at Venice are considered, 
depurated from the contribution due to sea waves, to obtain information about 
"high waters" and in particular about their frequency and their predictability. 

Tidal levels recorded at Punta della Salute and Diga Sud Lido between 
1975 and 1984 and published by the "Consorzio Imprese Veneto-Emiliane" are 
considered. The study is based on recent measurements, however a preliminary 
investigation performed on data recorded at the beginning of the century has 
shown similar results. 

Because extreme events are of more practical interest, the analysis is 
performed also for the signal envelope of maxima which is obtained starting from 
the knowledge of diurnal and semidiurnal tidal oscillations. 

The procedure used in the rest of the paper is the following: first the time 
oscillations of the water level in the lagoon of Venice are analysed by studying 
both the hourly measurements and the 'envelope' of maxima recorded during 
one year for different years. The presence of a predictable periodic component 
and of an irregular component is shown. Indeed, the Fourier spectra of the 
signals relative to the hourly measurements show peaks related to the diurnal, 
semidiurnal and moon tide and a broad band part, which is characteristic of 
random and/or chaotic systems. Moreover, the intensity of the continuous part 
of the spectra turns out to be of the same order of magnitude as the peaks. 
Then the dynamic behaviour of the system is analyzed in the pseudo-phase space 
where the attractor is reconstructed by means of the time-delayed coordinate 
technique. The characteristics of the attractor are evaluated and in particular 
the correlation dimension, which gives indications of the degrees of freedom of 
the system, is computed along with the largest Lyapunov coefficient which is a 
measure of the sensitivity of the system on initial conditions. The results obtained 
give strong indications of the presence of chaotic dynamics. For this reason, an 
attempt to predict the time development of the system by using the deterministic 
algorithm by Farmer h Sidorowich (1987) is made. The success in predicting the 
future time development of the system on the basis of historical records by means 
of deterministic methods is a further indication of the presence of deterministic 
chaos. 
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Signal and spectrum of tidal elevation 

It is widely recognized that the understanding of the dynamics of currents 
and sea level oscillations is extremely important in most coastal regions and 
particularly in estuaries and lagoons. Typically, sea level oscillations related to 
the astronomical tide are the most significant even if sometimes meteorological 
factors such as wind, a non uniform distribution of atmospheric pressure and 
storms can induce sea level oscillations of the same order of magnitude as tidal 
oscillations. 

Indeed, in Venice, "high" waters are often caused by the simultaneous presence 
of high tide and meteorological factors. While tidal oscillations, being the result 
of the periodic motion of celestial bodies, are deterministic and thus predictable, 
the effect of meteorological events is aperiodic and thus not easily predictable. 

In fact, the astronomical tide is caused by spatio-temporal variation of the 
gravitational field due to the relative motion of the earth with respect to other 
celestial bodies. An analysis of the phenomenon taking into account all the 
possible influences is extremely complex. However, considering the order of 
magnitude of gravitational forces induced on the earth's surface by different 
celestial bodies, it can be inferred that in order to study sea level rise due to 
the astronomical tide it is sufficient to consider the relative motion of the earth, 
the moon and the sun. Usually tidal oscillations are decomposed into a number 
of sinusoidal time components, each with its own periodicity. Five basic periods 
are usually taken into account: 1 day due to the earth's rotation, 29.53 days due 
to the rotation of the moon around the earth, 365.24 days due to the rotation of 
the earth around the sun, 8.847 years due to the motion of the moon perigee and 
18.616 years due to the rotation of the orbital plan of the moon. 

Since in the present work we study sea level oscillations when meteorological 
factors prevail, the time scale of interest to us is of one week and thus periodicities 
of 365.24 days, 8.847 and 18.616 years can be ignored. In other words, we will 
assume that the sea level oscillates with periodicities of 1 and 29.53 days around 
a mean level slowly varying with moderate escursions during one year. 

The periodic nature of the astronomic component of the tide is evident in 
figure 1 where the tidal levels (tj) recorded during the months of August and 
September 1981 are plotted. Similar results are obtained considering different 
years. During summer and spring, the influence of wind, storms and other 
meteorological events on sea level oscillations is usually negligible. On the other 
hand, aperiodic meteorological events become relevant in autumn and winter. 
In figure 2 the tidal curve relative to November and December 1981 is reported 
in order to show the aperiodic character of exceptional events. The aperiodic 
character of extreme events is still more evident by looking at figure 3 where the 
envelope of maxima is shown for the years 1980-1984. 

The spectrum of the signal, shown in figure 4(a) for the year 1981, supports 
this argument showing two peaks related to the periodicities of 12 and 24 hours 
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Figure  1:    Tidal levels recorded at  Punta della Salute during  August  and 
September 1981. 
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Figure 2:   Tidal levels recorded at Punta della Salute during November and 
December 1981. 
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Figure 3: Envelope of maxima for the years 1980, 1981, 1982, 1983 and 1984. 



1830 COASTAL ENGINEERING 1992 

-a50  -aOO  -2.50  -2.00  -1.50   -too 
log      (Ihs/T) Ihs/T) 

Figure 4: a) Spectra for the year 1981, b) Spectra of the 'envelope of maxima' 
for the years 1980, 1981, 1982, 1983 and 1984. 

and a broad band part with the same order of magnitude. 
The intensity of the broad band part varies when different years are considered: 

in fact, it is larger for years which have experienced more "high waters". However, 
considering different years, no relevant differences are found. The spectrum of 
the 'envelope' of maxima (see figure 4(b)) shows no peaks since the periodicities 
of 12 and 24 hours have been removed from the time sequence and the broad 
band part is larger and stronger with respect to that of the original signal. 

So far, we have shown evidence of the non-periodic nature of sea level 
oscillations inside the lagoon of Venice; in the following we will investigate the 
nature of such oscillations. In fact, they could either be the result of a stochastic 
system, i.e. a dynamic system with a high number of degrees of freedom or the 
result of a chaotic system with few degrees of freedom. 

The Chaotic Character of Tidal Elevation 

In order to study the aperiodic character of tidal oscillations, it is necessary 
to perform a quantitative study of the attractor of the system. As suggested by 
Takens (1981) the trajectory of the system is reconstructed into a "pseudo-phase" 
space by using the time sequence of the values attained by one physical variable 
characteristic of the phenomenon. More specifically the A*—dimensional vectors 
s, describing the trajectory of the system in the pseudo-phase space, are obtained 
on the basis of the measurements f(t) of the tidal level performed at the stations 
of Punta della Salute and Diga Sud Lido: 

s(t) = [sus2, ....,sN] = [f(t)J(t - r), ,f(t - (TV - 1)T)] (1) 
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where / is the water level as a function of time and r is an arbitrary time delay. 
Takens (1981) showed that an attractor topologically equivalent to that of the 

original system, is obtained independently of the value of r if N is sufficiently 
large. However, for computational reasons, it is necessary to accurately choose 
these parameters in order to have an accurate estimate of the characteristics of 
the attractor.   In fact, if r is too small, the attractor collapses along the line 
sj = 52 = s3 —   and the computation of the characteristics of the attractor 
becomes inaccurate. 

In literature, it is suggested that the value of r as the time delay relative to 
the first zero of the autocorrelation function be chosen. According to Battiston 
& Zambella this procedure gives a value of r equal to 20 hours. However, in 
the following we have used values of r equal to 50, 100 and 200 hours because 
these values have led to a better estimate of the Lyapunov exponent and of the 
correlation dimension. As far as the value of N is concerned, we have computed 
the characteristics of the attractor for increasing dimensions of the pseudo-phase 
space until non relevant differences were observed between N and N + 1. 

It is well-known that a chaotic attractor possesses a geometric structure called 
fractal attractor which has a finite and generally non integer dimension. To 
establish the nature of the aperiodic oscillations of the tidal wave, it is necessary 
first to evaluate the dimension of the attractor. In order to obtain a quantitative 
estimate of the possible fractal structure of the attractor, we computed the 
correlation dimension as defined by Grassberger fe Procaccia (1983). As suggested 
by Takens (1981), the trajectory of the system into the pseudo-phase space is 
represented by a set of M points i*; defined by (1) and their relative distance is 
computed using the Euclidean distance. Then the correlation function is defined 
as the limit for M tending to infinity of the number of pairs with a relative distance 
dij less than r divided by M2. 

C(r) =   lim  -—   {Number of pairs (si,Sj) such that d^ < r} (2) 

Grassberger & Procaccia (1983) showed that for many attractors the 
correlation function for r tending to zero behaves like a power law, i.e. 

YimC{r) = ard (3) 

The correlation dimension is then defined as the exponent d of the power law, 
which can be expressed as: 

d = lim!2§ioC« (4) 
r-o    log10r 

In figure 5, the correlation function relative to the signal of tidal elevation is 
plotted for the years 1980 and 1982 and for a few dimensions N of the embedding 
(fmoi denotes the maximum linear extent of the attractor).   It is possible to 
observe that in both cases, by increasing N, the slope of the correlation function 
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Figure 5: Correlation function for the years a) 1980 r = 200; b) 1982 r = 200. 
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Figure 6: Slope of the correlation function for the years a) 1980 r = 200; b) 1982 

T = 200. 
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Figure 7: Correlation function for the 'envelope of maxima' relative to the years 
1980, 1981, 1982, 1983 and 1984 r = 40. 

reaches a limiting value for small but finite values of r where the limit defined by 
(4) can be evaluated and in the meantime boundary effects can be ignored. The 
value of the correlation dimension can best be estimated by looking at figure 6 
where the function S(r), corresponding to the slope of the correlation function, 
is plotted as a function of log10(r/rmM) for the same years as in figure 5. 

It can be seen that for sufficiently large values of N and for small values of 
l°g,w{r/rmax):S attains a constant non integer value close to 6. This value can 
be regarded as an approximation of the correlation dimension d. 

A smaller value of the correlation dimension is obtained considering the 
attractor relative to the envelope of maxima. In figure 7, where the slope of 
the correlation function relative to the envelope of maxima is plotted for different 
values of N it can easily be seen that for small r/rm&x the correlation dimension 
tends to a constant non integer value close to 2. The fact that the correlation 
dimension of the envelope of maxima is lower than that of the original signal is 
reasonable since by extracting the envelope of maxima a number of degrees of 
freedom related to the astronomic tide have been removed. As we shall see in 
the following, the lower dimension of the envelope of maxima turns out to be an 
advantage when making predictions of the temporal development of the system. 

From the results shown so far, it is possible to conclude that sea level 
oscillations inside the lagoon of Venice are the result of a chaotic dynamic system 
since the number of degrees of freedom of the attractor is limited. Hence, in 
principle, it would be possible to predict the time development of tidal elevation 
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by integrating a limited number of ordinary differential equations. 
The following step is to determine the time interval within which a trajectory 

of the system can be predicted with a given uncertainty starting from an initial 
state known with an assigned error. It is well-known that chaotic attractors show 
an exponential divergence of the trajectories in the phase space. After some time, 
two states initially close to each other develop into two states far apart. Thus, 
the prediction of the time development of a given state, known with a given 
uncertainty, can be obtained only for a time interval which depends on the rate 
of divergence of the trajectories in the phase space. This rate of divergence is 
expressed by the largest Lyapunov coefficient. 

Lyapunov coefficients can be defined by considering the time development of 
a hypersphere lying on the attractor reconstructed into the pseudo-phase space. 
Due to the chaotic nature of the system, the hypersphere will develop into an 
elipsoid. The i-th Lyapunov coefficient is defined in terms of the length of the 
i-th principal axis of the elipsoid (p;) by means of the following relationship: 

A; =      lim      log, ——r- (5) 
(tl-toHootj -i0 Pi(t0) 

where the values of A; are ordered in ascending order and tx — t0 is the time 
interval during which the computation is performed. 

Thus, the Lyapunov coefficients are related to the average expansion or 
contraction of the hypersphere in the different directions of the phase space. 
Axes which expand on average originate positive values of A; while axes which on 
average contract give rise to negative values. 

In the present paper the procedure suggested by Wolf et al (1985) to compute 
the largest Lyapunov coefficient is employed. 

In table 1 the values obtained for the largest Lyapunov exponent (Ai) are 
reported for the years ranging between 1980 and 1984. 

TABLE 1 

year 1980 1981 1982 1983 1984 
Ai(hours-1) 0.025 0.024 0.026 0.023 0.026 

Similar values are obtained by taking into account the 'envelope of maxima'. 
The values obtained for \\ would lead to the conclusion that sea level 

oscillations inside the Lagoon of Venice could be predicted for long periods, at 
least from a theoretical point of view. However, it should be considered that the 
use of a finite number of experimental data does not allow the desired infinitesimal 
length scales of the attractor to be tested. These scales are also inaccessible due to 
the presence of noise on finite length scales. Therefore, also taking into account 
that the chaos-producing structure of the attractor might be of small spatial 
extent, the estimate of the largest Lyapunov exponent of the system and thus 
of the timescale on which the system dynamics becomes unpredictable may be 
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affected by a significant error. This fact can cause an underestimate of the largest 
Lyapunov coefficient. 

The Predictions 

Even though the characteristics of its attractor could not be quantified 
accurately due to the knowledge of a finite number of data, from the results 
previously described it is possible to infer that the system has a chaotic nature. 
Therefore, the prediction of the time development of the system can be attempted 
by using algorithms which take advantage of the deterministic nature of the 
system. 

Even though the extreme sensitivity of the time development of the system 
on initial conditions poses some limits to the possibility of predicting its future 
time development, it is possible to make accurate predictions for small times and, 
at least in principle, to give an estimate of the error affecting the predictions. 

In the present paper use has been made of the method proposed by Farmer 
and Sidorowich (1987). As a first step, a time sequence of data is used to represent 
a state on the attractor in the pseudo-phase space by means of (1). Secondly, a 
functional relationship between the current state s(t) and the future state s(t+At) 
is assumed to exist: 

3(t + &t) = Ut(3{t)) (6) 

Due to the chaotic nature of the system, the function f&t is certainly 
non-linear. To obtain an approximation to f&t, Farmer & Sidorowich (1987) 
suggest using the knowledge of the time development of a number of points on 
the attractor which are near to s(t0), i.e. to the state whose time development 
we want to predict.   Let us consider the P + 1 points of the attractor (s(tj), 
j = 1,2, ,P + 1) which are the nearest to s(t0).   A local approximation of 
f&t is obtained on the basis of the values s(tj + At) attained by the P -f 1 
points. The easiest procedure would be a zero order approximation where P = 0. 
In this case s{t\ + At) could be assumed to be the approximation of f&t- A 
better approximation is obviously obtained assuming P + 1 larger than N and 
determining, by means of the least square method, the coefficients of the linear 
relationship a * s(tj) + b which best approximate s(tj + At). 

After the values of the matrix a and b have been obtained, the prediction can 
easily be performed: 

s(t0 + At) = a * s(t0) + b. 

The results obtained are presented in figures 8 and 9 where predicted and 
measured levels are plotted as a function of time both for tidal levels and for 
the envelope of maxima. The measurements of tidal elevations during the years 
1980, 1981, 1982 and 1983 have been used to reconstruct the attractor and the 
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Figure 8: Predictions (—) and measurements ( ) of tidal elevations at Punta 
della Salute in the last months of 1984. a) At = 2 hours; b) At = 24 hours. 

prediction of tidal levels has been made for the last three months of 1984 when 
there were some exceptional events. 

In figure 8 the observed ( ) and the predicted (—) tidal levels are shown 
for November 1984 when three events of high water were observed. In figure 8(a) 
the prediction 2 hours into the future is shown while in figure 8(b) the prediction 
24 hours into the future is presented. In figure 9(a) and (b) the predictions of the 
envelope of maxima are shown for 12 and 24 hours into the future respectively. 

It is possible to see that the predictions relative to the envelope of maxima 
are more accurate than those of the original signal; this fact can be explained 
on the basis of the lower correlation dimension of the signal envelope of maxima 
with respect to that of the signal of tidal elevations. 

As expected, by increasing At the predictions are less accurate both for the 
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Figure 9: Predictions (—) and envelope of maxima ( ) at Punta della Salute 
in the last months of 1984. a) At = 12 hours; b) At = 24 hours. 

original signal and for the envelope of maxima. 
However, the prediction could be improved by considering larger data set to 

reconstruct the attractor and by using a higher order approximation to obtain 
the local predictor f&t. In order to evaluate the performance of the proposed 
model it is necessary to take into account that, as reported by different authors 
(Battiston & Zambella (1981), Cecconi et al (1992)), the error of the statistical 
methods for predictions for a time in the future less than 15 hours ranges between 
10 to 15 cm. 
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