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Pressure Oscillations during Wave 
Impact on Vertical Walls 

M.E.Topliss*       M.J.Cooker*        D.H. Peregrine1 

Introduction 

This area of study concerns wave impact pressure on vertical structures. Se- 
vere damage can be inflicted on coastal defences during storms and numerous 
laboratory experiments have been undertaken to gain an understanding of the 
physical processes. This paper gives a mathematical description of high fre- 
quency pressure oscillations which are observed in measurements of water-wave 
impacts; particularly impact against a vertical wall. Our ultimate aim is to trace 
the physical origins of the pressure fluctuations which are related to the under- 
standing of the role of fluid compressibility in breaking wave impact pressure. It 
has been suggested by some authors that the recorded pressure oscillations are 
due to the vibrations of air-filled gas bubbles, for example Weggel & Maxwell 
(1970) model some details of acoustic wave propagation. In addition, it is well 
known that the compressibility of a small volume fraction of air in water dramat- 
ically reduces the velocity of sound in the mixture. We investigate possible cases 
by simplifying the geometry and finding the frequency of free oscillations. We 
ignore the main flow of water since it has a longer time-scale. Our initial model 
considers compressible aerated water near the wall and compressible non-aerated 
water with a much higher sound speed further away. This is compared with a 
simple example of an air pocket trapped against a wall in incompressible water. 
Comparisons with three experimental results are encouraging. 
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Bubbly mixture near a wall 

This model applies to the instances when a wave has broken creating a vol- 
ume of water with many small bubbles next to the impact wall. This is now a 
compressible mixture. 

Consider a region of uniform bubbly mixture (region 1) with a gas fraction 
a next to a vertical wall, and non-aerated water on the other side (region 2) as 
shown in figure 1. 

We treat the solid wall and solid bed as rigid so that the component of 
displacement normal to these boundaries vanishes. As there is a large density 
contrast between the fluid and the air above, we take the pressure to vanish at 
the free surface. For linearised theory and sinusoidally varying velocity potential 
<j)(x,y) elwi this implies <j> may be taken to be zero on the free surface. 

Q atmosphere 
^s'dn ^> = o 

1 
region 1 1 

1 
1 

region 2: non-aerated water 

& = 0 

Figure 1. Limited volume of bubbly water 

Sound waves are weak pressure disturbances which propagate at high speed 
through a fluid. The sound velocity in air is approximately 340 metres per 
second; that in water is approximately 1500 metres per second. In a mixture of 
air and water however, the speed of sound is dramatically reduced. The density 
in region 1 is taken to be p\ = (1 — a)p2 where p2 is the density in region 2. We 
have taken the speed of sound in region 1 as derived by Hsieh & Plesset (1961) 
to be 

•a =        IP 
1      pia(l-a)' 

where p is the atmospheric pressure, pi = defined above, 7 is the ratio of specific 
heats, a is the gas fraction. For example f percent, 4 percent and 10 percent 
aeration give sound speeds of 120 m/s, 60 m/s and 40 m/s respectively, and this 
accords with experimental measures. The expression for <? is a good empirical 
rule provided a is not too near 0 or 1. 

Viscosity and gravitational effects will be ignored. The reduced wave equa- 
tion, 

(V2 + *?)& = 0 

where the subscripts i = 1,2 refers to regions 1,2 respectively and h = UJ/C{ where 
ui = 2icf , is solved by separation of variables. 
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As the free surface and the rigid bed are totally reflecting surfaces the fluid 
can be considered as an acoustic plane waveguide and a standing wave field 
results, which has a cut-off frequency u„ for each mode of oscillation, below 
which no propagation occurs. In region 2 the sound speed is very much higher 
and therefore u maybe less than the cut-off frequency and there is no propagation. 
The velocity potential for the bubbly mixture in this instance is: 

At eV^F^i cos(7n2/) cosh   ^k2 _ 72 (a. + i) 

and for the non-aerated water outside the bubbly mixture is 

= At eV^f^1 (1 - a) cos(7n2/) cosh   ^kj -i*L -\/ln-k2x e
iwt 

where c2 = the speed of sound in non-aerated water, 7n = nw/2H , n =1,3,5, 
..., H is the depth of the fluid, L is the width of the bubbly layer, Ai is a constant. 

Assuming pressure and normal velocity are continuous across the interface 
between region 1 and region 2, we find an expression for the frequency of modes 
of oscillations trapped in region 1: 

(1 - «) \p& k2 — y «i ll  tan y/%-tfL 

For a fixed width and air content, a high free surface will give a low frequency 
as illustrated in figure 2. Figure 3 shows that, for a fixed amount of air and depth, 
a wider region will have a lower frequency. Conversely a very narrow band of 
bubbles against a rigid wall will produce very high frequencies. Both figures 
show higher frequencies with a lower aeration level. 
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Figure 2. Variation of f with H 
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A trapped air pocket 

To model of a trapped air pocket against a vertical wall we now have to take 
into account a) the presence of the free surface, b) the cylindrical geometry of 
the gas pocket, c) the presence of the rigid wall. 

Suppose the bubble contains air at atmospheric pressure and that it's centre 
is submerged a distance h below the free surface and lies a distance d above the 
seabed as shown in figure 4. The water is taken to be incompressible. 

d± _ 0 atmosphere 
^^dn ^> = o 

air 1 
Laplace's equation: V2<f> = 0 

incompressible water 

Figure 4. Trapped air pocket at the wall 

We model the vibrations of the trapped air pocket by considering the radial 
oscillations, translation and shape oscillations of a single two dimensional bubble 
with semi-circular cross-section of radius r. As this study concerns only relatively 
large bubbles, surface tension effects can be neglected as they are only significant 
for small radii. During the short time in which the bubble oscillates regularly 
we suppose that the free surface moves very little so that we may again ignore 
the flow in the impacting wave. We take an image of the bubble above the free 
surface to be oscillating in anti-phase with respect to the bubble, an image below 
the rigid bed to be oscillating in phase, and a third image below, oscillating in 
anti-phase, to ensure symmetry as shown in figure 5. These images then extend 
above and below to produce an infinite series which is summed analytically. The 
potential for this model is 

= -a0 log 
cosh(A«) — cos(Ad) 

cosh(A«) + cos(A<i) 
+ 7 r + ' 

(z - Z0) {Z - 20)2 

where A = ir/2(d + h) , zo = the position of the bubble, i — y/—l, a0,a\.,a.2 are 
constants. Figure 6 shows the pressure contours from a two dimensional bubble. 

The logarithmic term, which is the dominant term, represents the radial 
oscillations. The second term, evaluated on the bubble surface, 

= — ao — [ cot Xd + tan \d ] sin 6 , 
(z - z0) 2 

represents translational motion and the third term, evaluated on the bubble 



VERTICAL WALL OSCILLATIONS 1643 

surface, 

\2  i 
°2        = a0~-[4 +tan2 Xd - cot2 Ad] (2 cos2 0 - 1) , 

(* - *o)2 

represents a first approximation to shape oscillations. 

We calculate the time-harmonic irrotational flow induced by the semicircular 
two dimensional bubble and the frequency of the small oscillations is given by 

27P[1 + IAV] 

pr2[\og(\Xr tan Xd) + \X2r2} 

p is the atmospheric pressure, p is the density of water. As figure 7 shows, for 
fixed h + d, an air pocket nearer the rigid bed will have a lower resonant frequency 
than an air pocket nearer the free surface. The size of the air pocket is inversely 
proportional to the frequency as illustrated in figure 8. This corresponds to 
the previous model for the bubbly mixture which showed high frequencies are 
obtained for lower aeration. 

i) as h becomes large, 
. .2 27P 

pr2 log [2rd/R]' 

the frequency for a single two dimensional bubble in the vicinity of a rigid 
boundary, where R is a large number representing a boundary far away. This is 
to ensure boundary conditions in the far field are satisfied, 
ii) as d becomes large, 

ji _ 27p 
pr2 log [r/2h]' 

the frequency for a single two dimensional bubble in the vicinity of a free 
boundary (Topliss 1991). 
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Figure 5. Bubble and three images 
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Figure 6. Pressure contours from single bubble on wall 
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Comparisons with experiments 

We have considered three experimental studies for comparison with these theo- 
retical results: 

I) Hattori & Arami (1992); Chuo University, Japan 

Hattori & Arami have provided us with many details of their experiments 
which investigate the importance of an air pocket between the breaking wave 
and the wall. The experiments were undertaken in a small wave tank (still 
water depth at the wall of five centimetres) and high-speed video frames were 
taken of waves as they impact on a vertical wall and some waves appear to 
trap a cylinder of air against the wall. Records from six pressure gauges of one 
centimetre diameter are available. 

The histories of the pressure, measured at the wall, for these waves exhibit 
three stages. Initially the pressure rises to a peak value and is followed by an 
interval of regular smooth oscillations, of decreasing amplitude. These oscilla- 
tions are displayed with the same frequency in all six pressure gauges. Clearly 
this decay requires further modelling. This finally develops into a more confused 
signal, consisting of higher frequencies with lower amplitudes, and which carries 
on for an indefinite time. 

As the wave advances towards the impact structure, it begins to curl over, 
entrapping an air pocket against the wall. In the video frames following the 
impact, it can be seen that the free surface rises and a thin jet of water shoots 
up the wall. We neglect this since it is usually much thinner than the bubble 
until a later stage and assume a flat surface in our models. For each experiment 
we have considered, we have taken measurements from the first three frames at 
the begining of the oscillations and compared the frequency calculated for that 
geometry with the frequency given by the pressure gauges. The theory compares 
particularly well for large air pockets, see table 1. 

II) Witte (1988); Leichtweiss-Institut, Germany 

Witte describes a wave impact against a vertical wall and observed an air 
pocket trapped against the impact wall. The wave tank had a still water depth 
at the wall of sixteen centimetres and fourteen pressure cells. Full details are 
given of one case (example no.l3,figure 6.3, type II). Regular oscillations are 
recorded in all cells of period 12 milliseconds, or a frequency of 83.3 Hertz. If 
we choose h = 0.22 m and d = 0.05 m (no photographs are given but the de- 
scription given by Witte suggests that the air pocket is nearer the bed than the 
free surface) then, from figure 9 below where the variation of frequency with size 
of air pocket is presented, a bubble of radius 0.0155 m would give a frequency 
of 83 Hertz. Although no photos are available, the statistics presented in Witte 
(1988) for this type of impact give scope for further study. 
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description Topliss Hattori 
distance d 
(metres) 

distance h 
(metres) 

radius r 
(metres) 

frequency / 
(Hertz) 

frequency / 
(Hertz) 

data No.1-031-3 
frame 715 0.06 ^   0.016 0.011 235 210 
frame 720 0.06 0.017 0.011 228 210 
frame 725 0.061 0.017 0.011 228 210 

data No. 172-3 
frame 815 0.031 0.038 0.007 233 210 
frame 820 0.032 0.04 0.007 231 210 
frame 825 0.033 0.042 0.007 229      J 210 

data No. 132-3 
frame 295 0.031 0.024 0.008 241 190 
frame 300 0.031 0.04 0.008 207 190 
frame 305 0.031 0.044 0.008 202 190 

data No. 178-3 
frame 320 0.027 0.025 0.02 142 104 
frame 325 0.029 0.041 0.02 106 104 
frame 330 0.029 0.043 0.02 104 104 

data No.152-6 
frame 015 0.029 0.044 0.024 93 100 
frame 020 0.03 0.047 0.024 90 100 
frame 025 0.03 0.05 0.024 87 100 

data No.2-255-4 
frame 330 0.032 0.037 0.02 113 99 
frame 335 0.032 0.044 0.02 104 99 
frame 340 0.032 0.049 0.02 99 99 

Table 1. Comparison of experimental data and theory. The frames are separated by a 

timestep of five milliseconds and / = OJ/2TT 
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Figure 9. Comparison of theory with data 
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III) Graham k. Hewson (1992); Plymouth University, England 

Graham k, Hewson have carried out model-scale experiments of waves break- 
ing against a vertical wall, with three pressure transducers and one aeration 
gauge in order to investigate aeration levels of a wave impacting upon stuctures. 
No previous work (to our knowledge) has been carried out on aeration measure- 
ments and with the kind permission of Graham & Hewson we are able to compare 
our theoretical work with the preliminary work carried out at Plymouth. Video 
frames are not yet available. 

After impact the pressure transducers show both rapid fluctuations and an 
underlying frequency of approximately 30-40 Hertz. Although we have been 
unable to find an example which would give a frequency this low, the rapid 
fluctuations are in the range of 100-300 Hertz which is consistent with other ex- 
periments. The levels of aeration shown range between 4 percent and 20 percent. 
If we estimate the depth of the water at the wall to be 0.1 metres and the width 
of the bubbles to be 0.04 metres we can expect frequencies of between 100 and 
260 Hertz, as illustrated in figure 10. These are within the range of frequencies 
measured in the experiments. 

Discussion 

We have not yet been able to compare the theory with large scale experi- 
ments, although studies are been undertaken in Hannover (Schmidt, Oumeraci 
k, Partenscky 1992), where double peak forces have been recorded along with 
negative pressures. Table 2 gives examples of how scale effects could vary the 
frequencies according to the size and position of an air pocket trapped. We 
have taken an example from table 1 (data No.132-3) and altered the geometric 
parameters. 

radius r distance d distance h frequency / 
(metres) (metres) (metres) (Hertz) 

0.008 0.031 0.040 207 
x5 0.04 0.155 0.2 42 
x 10 0.08 0.31 0.4 21 
x50 0.4 1.55 2.0 4.2 

x 100 0.8 3.1 4.0 2.1 

Table 2. Variation of geometries for a trapped air pocket 

For a wave which breaks giving a bubbly mixture, table 3 gives examples of 
frequencies which could be obtained in a larger volume. Here we have taken the 
gas fraction to be 0.1. 
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height H width L frequency / 
(metres) (metres) (Hertz) 

0.1 0.04 146 
x5 0.5 0.2 106 

x 10 1.0 0.4 14.6 
x50 5.0 2.0 10.6 
x 100 10.0 4.0 1.46 

Table 3. Variation of geometries for a bubbly mixture 

Table 2 and 3 show that the frequency varies linearly with the geometric 
parameters, a property easily deduced from the equations. For the lowest fre- 
quency shown above, a typical compressible length = wavelength / 1~K which is 
approximately 160 metres in pure water but only 5 metres for 10 percent aeration 
indicates that for the largest waves that trap air, sound propagation is important 
as has been noted by Schmidt, Oumeraci & Partenscky. 

This work has only studied free oscillations. The initial forcing, amplitude 
and damping of the oscillations all require further study. The decay of the regular 
oscillations, well illustrated by the experiments of Hattori & Arami (1992), are 
due to damping which could be the result of several mechanisms: viscous damp- 
ing, thermal damping or acoustic radiation. There are also radiating modes 
which need investigation. 
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