
CHAPTER 117 

WAVES ON PERMEABLE LAYERS 

Toru Sawaragi1) and Ichiro Deguchi2) 

Abstract 

To analyze a wave attenuation on a permeable layer, we first examined the 
applicability of Forchheimer type equation to the fluid motion in the permeable layer 
through permeability tests in steady and unsteady flows. Then, we investigated the 
effects of a boundary shear on the surface of the permeable layer on the wave 
attenuation by solving boundary layer equations around the surface of the layer. 

It is found that the permeability and the turbulent drag coefficient in the 
Forchheimer type equation in the unsteady flow are different from those in the steady 
flow. We showed that the Forchheimer type equation could linearlize by using an 
equivalent linear drag coefficient formulated empirically through the permeability test. 
The effect of the boundary shear on the wave attenuation on the permeable layer was 
small compared with the effect of energy loss in the permeable layer if the thickness of 
the layer was relatively large. 

It is also found that we can predict the wave attenuation on the permeable layer 
exactly when the incident wave has a strong linearity. 

Introduction 

When we analyze a wave deformation through a structure with permeability, we 
often apply a Forchheimer type equation to a fluid motion in the permeable layer. A 
non-linear turbulent resistance term in the equation is usually replaced by a linear 
resistance term based on a so-called Lorentz's law of equivalent work. Also we can 
linearlize the equation by using a newly defined equivalent linear drag coefficient 
through permeability tests. 

However, the wave deformations on the permeable layer that were analyzed by 
these methods do not always agree well with the measured wave deformation. The 
followings are the conceivable reasons for this disagreement: 
1) Errors in the evaluation of empirical coefficients in the Forchheimer type equation in 
unsteady flow. Several experimental results were reported about the permeability, an 
additional mass coefficient and a turbulent drag coefficient of a constitution material of 
the permeable layer in unsteady flow. Those are obtained from the experiments under 
very limited conditions. 
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2) Disregard of the boundary shear on a surface of the permeable layer. The continuity 
of vertical velocity on the surface of permeable layer is satisfied in the analysis of the 
wave deformation of conventional potential approach. However, the continuity of 
horizontal velocity is not satisfied and we can not evaluate exact boundary shear. 
3) Non-linear behavior of incident waves. 

Objectives of this research are as follows: 
1) To investigate the influence of unsteady property of fluid motion on coefficients in 
the Forchheimer type equation through unsteady and steady permeability tests. Based 
on the experimental results, we formulate an equivalent linear drag coefficient. 
2) To evaluate boundary shear on the permeable layer by using a horizontal water 
particle velocity that is a solution of a boundary layer equation near the surface of 
permeable layer. We examine the influence of the boundary shear on wave attenuation. 
3) To examine the effect of nonlinear property of incident waves on wave attenuation 
by carrying out a Fourier analysis of surface displacement measured on the permeable 
layer. 

Waves on permeable layer 

First of all, we give brief explanation of an expression of wave on the permeable 
layer based on the potential approach. We suppose the wave of a period T and height 
H propagating in the positive x direction on the permeable layer. Figure 1 illustrates a 
definition sketch where D is the thickness of the permeable layer, h is the depth on the 
permeable layer, (u,w) are the water particle velocity in x and z directions, <j> and/? is 
the velocity potential and the pressure. We attach a subscript d to the quantity in the 
permeable layer. 

H, T 

(u,w,p) 

("<4 Wd,pd) 
I kp,Cm,Cforf 

1 OnoonrrrrY)  
Fig.l Definition sketch of wave on permeable layer 

We can treat a fluid motion on the permeable layer as a potential flow. If we 
apply Forchheimer type equation to the fluid motion in the permeable layer that is 
expanded to the unsteady flow by Sollitt et al.(1970), we can express the fluid motion 
in the permeable layer as follows: 

dt~~p   P    KP
q~ jfyq ( ' 

S = {l + (l-A)Cn}/A 
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where q is the sectional averaged infiltration velocity (macroscopic velocity) in the 
permeable layer, Vp is the pressure gradient, Kp is the permeability of the permeable 
layer, g is the gravity acceleration, v is the kinematic viscosity of the fluid, Cm and Cf 
are the added mass and the turbulent drag coefficients of the rubble of the permeable 
layer, and A is the void ratio of a permeable layer. 

There are two methods to linearlize the non-linear resistance term in Eq.(l). One 
is to determine an equivalent linear permeability by applying the Lorentz's law of 
equivalent work to the each layer of the horizontally divided permeable layers. We can 
determine a unique equivalent linear permeability Kpe through the whole sublayer by 
iterative calculations so that the total energy loss during one wave period becomes the 
same as that of the non-linear resistance term. However, we have to determine the 
values of Cm, Cf and Kp before we find out the equivalent linear permeability and 
linearlize Eq.(l). This method also requires large CPU time. 

Another method is to use an equivalent linear drag coefficient/, which brings the 
same energy dispersion as that of Eq.(l) in one wave period, instead of the 
permeability and the turbulent drag coefficients to evaluate drag force in Eq.(l). We 
have to determine the value of f before we linearlize Eq.(l) through the unsteady 
permeability test which I will mention latter in detail in a next section. Anyway, in both 
methods, we can linearlize Eq.(l) as Eq.(2) with the relation between Kpe and f given 
byEq.(3): 

S*L—±Vp-foq   or   sX—^p-l-q (2) 
dt     P 

F at     p y   Kpeo
H 

f = Y/iKpeO) (3) 
We normalize the quantities in the following manner: 

(x',z',h', D) = (c?/g)(x,z,h,D) ,t' = ot, Kp' =oKp/v 

(u', w, 'ud', wd') = (l/ooo) («, w, ltd, Wd) (4) 

(p',pd') = (l/Pgao)(p,Pd), (?,&') = (o/gaoM <t>d) 
where, a is the angular frequency and ao is the amplitude of surface displacement of a 
fundamental frequency component. 
Then the fundamental equations to be solved are shown below. 
On the permeable layer: 

VV=0 (5) 
where, u' =d$ldx' ,w' -dipId* (6) 

In the permeable layer: 
V2^'=0 (7) 

where, uj -§(ty,'/tf),wd' -%{d<f>J I dz') (8) 
and§ = Kpeo/v~llf (9) 

The pressure on and in the permeable layer is expressed as follows: 

Ji^ju.^^^2!!^      (io) 
P       [dtf + oa0

Z+  2g }V(?W   +\dz') \\ +ga0 

P/--^'-|^ + C2 (11) 
St 

where, Ci and C2 are the constant. 
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The velocity potential in and on the permeable layer has to satisfy the following 
boundary conditions: 

Kinematic boundary condition on the free surface: 

&.__<&#_&_ + &. 
di g     6K'   oK'      dz* 

Dynamic boundary condition on the free surface: 

'       9t       2g 
(13) 

Continuity of the pressure on the surface of permeable layer: 
p'=pd' :z'=-h' (14) 

Continuity of the vertical (macroscopic) velocity on the surface of permeable layer: 
w' = wd' :z'=-h' (15) 

No vertical flux from the bottom: 
wrf'=0 :z'=-(h'+d')       (16) 

These equations are solved by the same way as finding the solution of Stokes 
waves. The author et al.(Deguchi,1988) have already derived the 2nd order solution 
corresponding to the Stokes 2nd order theory of the order of (cPao/g). Here we show 
the result of the 1st order solution for the sake of restricted space. 

The dispersion relation for a sinusoidal wave with an amplitude ao, which is 
expressed by Eq.(17) is given by Eq.(18). 

rj = exp{;(A:'*' -t')} or  rj = a0 exp{i(hc - at)} (17) 

,        (iS + i )sinh khcoshkd + £ coshkhsinh kd 
a2=gkr {  (18) 

(|5 + ijcoshkhcoshkd + £sinh khsinh kd 
Equation (18) is correct to the 2nd order and is expressed here in a dimensional form. 
When the angular frequency o, the water depth on permeable layerh and the thickness 
of permeable layer d are given, we can find the wave number on permeable layer from 
Eq.(18). If the wave number is a complex with a positive imaginary part, i.e. k=a+i/3 
and P>0, the value of P becomes an attenuation factor of the wave on the permeable 
layer and we can express the surface profile of the wave as follows: 

t] = a0 cxp(-fix) exp{i(ax - at)} (19) 

Figure 2 illustrates the dependency of the attenuation factor/? on the non- 
dimensional permeability? and the value of d/h. These results are calculated by 
applying Lorentz's law of equivalent work to Eq.(l). The values of the coefficients in 
E(l) are shown in the figures. 

We can see from Fig.2(a) that the attenuation factor becomes the maximum when 
the value of § is in the range of 0.2 and 0.4. This means that the optimum permeability 
exists to attenuate incident waves on the permeable layer. Figure 2(b) shows that the 
attenuation factor increases with the increase of the relative thickness of the permeable 
layer d/h. However, the rate of increase of the attenuation factor is small when d/h> 1. 
It is also found that the turbulent drag coefficient C/ also gives influence on the 
attenuation factor. 

From these results, we can judge that the values of the coefficients in Eq.(l) (or 
Eq.(2)) play very important roles in the attenuation of wave on the permeable layer. 
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Fig.2 Dependency of attenuation factor P on nondimensional permeability 

§(Fig(a))andd/ft(Fig.(b)). 

Unsteady permeability test 

The author et al.(1988) have already carried out the unsteady permeability tests 
of rubble stones of mean grain diameter D=3.1Scm and 1.35cm under various flow 
conditions of velocity amplitude # and period T. We found from the results that the 
value of/ increases with the increase of K-C number (KC=Q/(oD)) and proportional to 
-1/2 power of Reynolds' number (Rd=QD/v) when K-C number is small. It is also 
found that the permeability kp in unsteady flow is almost the same as that in steady 
flow. However, a turbulent flow drag coefficient consists is even more small a value 
in unsteady flow. The added mass coefficient becomes 0 to 1.8. 

However, a wave height attenuation on the permeable layer depends deeply on 
these coefficients. Therefore, we conducted another series of steady and unsteady 
permeability tests under a more extensive conditions by using rubble stones 
(D=4.50cm, 3.07cm, and 1.80cm). We measured a permeability Kp, added mass 
coefficient Cm, turbulent drag coefficient C/ and equivalent linear drag coefficient/. 
We also examined their dependencies on the values of KC, Rd and so on. 
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The equivalent linear drag coefficient is determined from the following equation 
by using measured pressure gradient Vp(t) and sectional averaged velocity q(t) in the 
unsteady permeability tests: 

/ 
pofq2dt 

qdt 

(20) 

An experiment was carried out by using a U-tube wave tunnel that has a straight 
part of 3m (0.2m wide and 0.3m high). We filled up rubbles in the middle of the 
straight part for 1.2m length. The amplitude of depth-averaged velocity q and the 
period T of generated oscillatory flow were 2cm/s<q<l0cm/s and 5s<T<12s. The 
corresponding ranges ofKC and Rd were 0A<KC<10 and 360<fo<4500. 

The results are summarized as follows:. 
1) The permeability in Eq.(l) obtained from unsteady test is not always coincides with 
that obtained from the steady test in the region where the value of is large (KC>4). The 
former is usually larger than the latter by 20 to 50%. 
2) The turbulent drag coefficient becomes 0 to 0.2 in the unsteady flow. This value is 
smaller than that in the steady flow. 
3) The added mass coefficient becomes the maximum (1.8) when the relative 
acceleration defined by qo/g is about 0.01. In the region where qo/g is nearly 0 and 
greater than 0.04, the added mass coefficient can be regarded to be almost 0. 
4) An equivalent linear drag coefficient does not rely on the value of Rd when the value 
of KC is larger than 2. The result is shown in Fig.3. It can be expressed by a unique 
function of KC. We can find the following empirical relation between/ and KC from 
Fig.3. 

/=0.1+1.8{<7/(a£>)} (21) 

12.0 

10.0 - 

"-, 
o D = 4.50 cm 

A D = 3.18 cm 

v D = 3.07 cm 

O D= 1.80 cm 

a  D= 1.35 cm 

2.0      4.0      6.0      8.0    10.0 
q(oD) 

Fig.3 Relation between equivalent linear drag coefficient and K-C number 

As I mentioned before, if we intend to evaluate fluid motion in the permeable 
layer more precisely, we should use Eq.(l) by applying the Lorentz's law of 
equivalent work. However, this procedure requires large CPU time until we find the 
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equivalent linear permeability coefficient. Also, we cannot formulate the permeability 
and the turbulent drag coefficient in the unsteady flow. Therefore, we use Eq.(2) 
together with Eq.(21) to construct boundary layer equation on and inside the 
permeable layer. 

Boundary shear stress on the surface of permeable laver 

(1) Boundary layer equation on and inside the permeable layer 
The former analysis of the wave deformation on a permeable layer is based on a 

potential wave theory. Accordingly, the continuities of the pressure and vertical 
discharged velocity are satisfied by the imposed boundary conditions. However, the 
continuity of horizontal velocity is not satisfied. On the surface of the rubble on the 
permeable layer, a so-called non-slip condition has to be applied. A Hell-Shaw 
approximation is usually applied in the analysis of the steady flow on the permeable 
layer. However, there is no guarantee that the same approximation can apply to the 
unsteady fluid motion on the permeable layer. 

Here, we suppose the existence of the boundary layer on and inside the 
permeable layer where the macroscopic horizontal velocity and the vertical gradient of 
horizontal velocity continue smoothly. We construct the boundary layer equations by 
applying Couette flow approximation in the boundary layer. Based on the analyzed 
results, we evaluate the boundary shear on the surface of the permeable layer and 
examine their effect on the wave attenuation on the permeable layer. 

Figure 4 illustrates the coordinate system where, up and UdP are the potential 
velocities on and in the permeable layer, u and Ud are the horizontal velocities inside the 
boundary layer. 

Z i 

3d* 

*//    Boundary layer 

h UH -*tf    ,','     '•   Turbulent Couette flow 

Fig.4 Coordinate system 

We also assume that the thicknesses of the boundary layers on and in the 

permeable layer are dw and <5<ftv, respectively and that the zero adjusting height iszo. 
We need not adjust velocity distribution on the surface of the permeable layer. 
However, we use the expression of zo considering the contrast of a rough turbulent 
boundary layer on an impermeable layer. 

Then the boundary layer equations on and inside the permeable layer are 
expressed as follows: 
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The upper boundary layer, zo<z<Sw; 
dU d2U 

~x-l? (22) 

The lower boundary layer, -4*v, <z<zo: 

S^=-foUd+Kdz^£ (23) 
at az 

U = u-up    ,Ud =ud~UdP (24) 
where, Kz and K& are the eddy viscosity on and inside the layer. 

Boundary conditions for these boundary layer equations are given by the 
following equations: 

U = 0   or   u = up    atz = dw (25) 
Ud = 0   or   ud=UdP   atz°*ddw (26) 
dU/dz = dUd/dz   or   0u/dz = aud/oz   atz = Zo  (27) 
U-Ud =Udp-up   or   u=Ud   atz=Zo (28) 

We borrow the following expression for the kinematic eddy viscosity in Eq.(22) 
from the rough turbulent boundary layer theory: 

Kz = Ku • z   in z0 < z < Sw (29) 

where u* is the shear velocity on the permeable layer and K is Karman's constant. 
On the other hand, we express the kinematic eddy viscosity in the lower 

boundary layer assuming that the mixing length in the permeable layer is regulated by 
the scale of the void (Yamada et al.,1982): 

Kdz = fDu •   in - 8dw<z ^Zo (30) 

where, Y is an empirical constant. 

Through the continuity of the kinematic eddy viscosity, the order of y is 
estimated to be as follows from Eqs.(29) and (30): 

Y = Kz0/D~ 0.4/30 a 0.0133 (31) 
Also, we assume that the boundary layer thicknesses of upper and lower 

boundary layer are expressed as follows based on the analogy of the rough turbulent 
boundary layer on the impermeable layer: 

Sw=5dW=aKw/cr (32) 

We conducted preliminary calculation as for the empirical constant a and it is 
found that the border shearing stress becomes almost constant in the region where 

a>3. Therefore, we use the value a=4 in the following calculation. 

(2) Velocity distribution and boundary shear stress 
The horizontal water particle velocities obtained as solutions to the upper and 

lower boundary layer equations are expressed as follows: 
zo<z: 

u = I ~Pi j ~—:—T-^ (ber<7 + ibciq ) — (kerg + ikeig ) 
[       [be.rqw + ibeiq„ J        j 

• + P2\ exp(-r'o-f)     (33) 

z<zo: 

Ud = Aexp^ n      exp I— JzUfl 

I 
exp(^)zj + ; exp(-io-f) (34) 
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Where, 

q„ = 2{K aliku•)}*    , q = 2{zol(ku>)f 

a = fa/s   , b=yDu>/s   , d = tarf^-oVa) • 
(ber,bei) and (ker, kei) are the real and the imaginary parts of the 1st and 2nd kinds of 
Bessel function. The integral constants Pi-fa are determined from the boundary 
conditions Eqs.(25) to (28). 

The boundary shear stress on the surface of the permeable layer rj(t) and the 
amplitude of the shear velocity u* corresponding to the maximum shear stress %<,* are 
evaluated by using the results. 

T(t)=pm-z0—U. (35) 
az 

u>-(raJp)m (36). 
We can decide the water particle velocity in the boundary layers and the shear 

stress on the permeable layer by carrying out the same iterative calculation as in the 
boundary layer theory on the impermeable bed using these relations. 

Figure 5 shows an example of the calculated phase variation of vertical 
distribution of horizontal water particle velocity in the case of J-6 that will be 
mentioned latter. The calculation conditions are shown in the figure. 

1.0 

a 
5      10    15     2(3 

«(cm/s) -0.2 

-0.4 

-0.6 

-0.8 
Fig.5 Example of the calculated velocity distribution 

Figure 6 illustrates the effects of nonlinearity on incident waves and permeability 
of the layer on the boundary shear stress. The horizontal axis gHT2/h2 of Fig.6(a) is 
the nondimensional parameter proposed by Shuto(1976) to show the nonlinearity of 
the waves of height H and period T at the depth of h. The horizontal axis of Fig.6(b) is 
the nondimensional permeability Kpecr/v=l/f. A calculation condition is shown in 
figures. 

From Fig. 6(a) it is found that the boundary shear stress increases in proportion 
to the increase of gHT2/h2. However, it decreases with the increase in i//(or Kpeo/v) 
and becomes constant in the region of l/f=Kpeo/v>3. This region of 1/f corresponds 
to the region where the influence of the permeability on wave attenuation decreases 
rapidly (see Fig.2(a)). 
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Fig.6 Effect of nonlinear property of incident wave (a) and permeability (b) on 
boundary shear stress 

Furthermore, we examined the influence of the turbulent drag coefficient and the 
added mass coefficient on the boundary shear stress. As a result, the non-dimensional 
shear stress increases with the increases of the turbulent drag coefficient and the added 
mass coefficient. As for the rate of increase one of the former is big. Accordingly, 
that border shearing force is relying strongly on a turbulent flow drag coefficient more 
an addition mass coefficient was understood. 

Effect of boundary shear stress and nonlinearity of incident waves on 
wave attenuation on permeable layer 

(1) Experiment on wave attenuation and velocity distribution on permeable layer 
We carried out experiments concerning attenuation of waves propagating on the 

permeable layer to investigate the effects of the boundary shear and nonlinear effect of 
incident waves on wave transformation on the permeable layer. The experiments were 
carried out on the permeable layer in the two-dimensional wave tank of 30m long, 
0.7m wide and 0.9m high. The permeable layer was made on the horizontal bottom in 
the wave tank and the length was 3.5m and the thickness was 15cm. The water depth 
on the permeable layer was 15cm. Two kinds of rubble stone whose mean diameter 
were 3.07cm and 1.80cm were used to construct the permeable layer. Experimental 
conditions are summarized in Table-1. 

In the experiment, We measured the water height attenuation through the 
permeable layer and particle velocity at the center of the permeable layer. Wave height 
was measured by capacitance type wave gauges at the interval of 25cm and water 
particle velocity was measured by an electromagnetic current meter and a hydrogen 
bubble method. The measured time series of surface displacement was analyzed by 
FFT to investigate the frequency component of wave motions. We also measured the 
phase difference of the water particle velocity near the boundary at the center of the 
permeable layer by a tuft method in 6 cases. Vertically distributed 6 pieces of silk yarn 
glued on the side wall of the wave tank were used as tufts. 
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Table-1 Experimental conditions 

Case rf(cm) h(cm) r(s) H(cm) gH^/h2 

J-l 3.07 15.0 1.50 6.32 62 
1-2 3.58 35 
J-3 1.25 6.03 43 
J-4 3.96 27 
J-5 1.00 5.87 26 
J-6 3.58 16 
K-l 25.0 1.50 6.78 34 
K-2 3.66 13 
K-3 1.25 6.32 16 
K-4 3.85 9 
K-5 1.00 6.92 11 
K-6 4.08 6 
L-l 1.80 15.0 1.50 6.52 64 
L-2 3.67 37 
L-3 1.25 6.41 44 
L-4 3.80 26 
L-5 1.00 5.72 25 
L-6 3.15 14 
M-l 25.0 1.50 6.53 23 
M-2 3.66 13 
M-3 1.25 6.20 15 
M-4 3.57 9 
M-5 1.00 6.33 10 
M-6 3.45 5 

(2) Change in wave height on permeable layer 
We calculated the deformation of the waves that were propagating on the 

permeable layer in the positive x direction by the following method: Let the wave 
heights atx=jAx and (j+l)Ax be Hj and Hj+l, respectively. The wave attenuation rate 
kp betweenx=jAx and (j+l)Ax caused by the permeability of the permeable layer is 
expressed as follows: 

kp = cxp(-04x) =///+;/«• (37) 

where, /? is the imaginary part of the complex wave number that is the solution to 
the dispersion relation Eq.(18). 

On the other hand, the wave attenuation rate at the same distance Ax caused by 
the boundary shear stress (Kt) is calculated from the following equation: 

2kh 
16 V     sinh2/Wi/ 

\Pg£_ 
k 

+ 1 1/2 (38) 

where, Et is the energy dissipation that is evaluated by using the boundary shear 
stress on the surface of the permeable layer as follows: 
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E< " -jf 2•U^ (39) 

Wave height atx=(j+l)Ax is calculated by using Kp and Kt from the wave height at 
x=jAx by the following relation: 

Hj*i-kpk,H, (40) 
Figure 7 shows two examples of comparisons of measured and calculated wave 

attenuation in different cases. A full line is the result calculated by considering only the 
influence of the permeable layer by using the equivalent linear drag coefficient^=1). 
A broken line is the calculated result that includes both effects of the boundary shear 
and the permeability. 

H_ 
H< 
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0.6 
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(b) 
permeable layer 

-2      -1 Am 

    Calculated wave height on permeable layer 
    Calculated wave height on permeable layer 

with boundary shear 
O      measured wave height 
• Attenuation of fundamental freq. compo. 
• Attenuation of subharmonic freg. compo. 

Fig.7 Wave attenuation on a permeable layer((a):Case J-5,(b):CaseJ-2) 
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Figures 7(a) and (b) are the results of Case J-6(r=1.0s) and Case J-2 (7=1.5s). 
Experimental conditions are shown in each figure. We used the value of the added 
mass coefficient in Eq.(22) obtained from the unsteady permeability tests. 

First, the influence of the boundary shear on the wave attenuation, that is shown 
by the difference of the solid and broken lines in the both figures, is very small and 
can be negligible as compared with the effect of the permeability. 

From Fig.7(a), it is found that measured wave height on the permeable layer 
(shown by the open circles) coincides fairly well with the calculated wave height when 
the wave period of incident waves is somewhat short. When the period is relatively 
long, the results of which is shown in Fig.7(b), the decrease of measured wave height 
on the permeable layer is larger than that of calculated one. 

We investigated this reason by examining fundamental frequency and sub- 
harmonic frequency components obtained from a Fourier analysis of the measured 
surface displacement around the permeable layer. The energy of the subharmonic 
component at the offshore side of the permeable layer was less than 5% of that of the 
fundamental frequency component in Case J-6. On the other hand, the energy of the 
subharmonic component in Case J-2 was more than 30% of that of the fundamental 
frequency band at the offshore of the permeable layer. 

In Fig.7(b), the decrease of the amplitudes of fundamental frequency and sub- 
harmonic frequency components obtained from the Fourier analysis are shown by 
large and small closed circles. The decrease of the amplitude of fundamental frequency 
component on the permeable layer agrees well with the calculated wave attenuation 
based on the linear wave theory. However, the decrease of the subharmonic compo- 
nent is larger than the predicted wave attenuation. Therefore, the difference of the 
measured and calculated wave heights of case shown in Figure 6 comes from the fact 
that a large subharmonic component was included in the incident waves. 

We have already reported that the decrease of the subharmonic component in a 
bound wave like Storks 2nd order wave is twice as first as the decrease of the funda- 
mental frequency component (Deguchi, et al.,1988). However, the incident waves in 
the case of J-2 included a larger subharmonic component that cannot be explained by 
the Stokes wave theory. Also, the analysis method of the wave deformation on the 
permeable layer based on a non-linear wave theory has been proposed (Isobe, et 
al.,1991). Here, we examine applicability of the linear wave theory to the wave 
transformation on the permeable layer. 

Figure 8 illustrates errors of the calculated wave heights in the 24 cases shown in 
Table 1. 03 . U o 

30.0 _ 

-25.0 

^20.0 o 
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o 

o 
o 
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Fig. 8 Estimated error of wave attenuation on permeable layer 
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The horizontal axis is the parameter gHT2/h2 concerning the nonlinearity of 
incident waves (Shuto, 1973). The error was defined by using the difference of 
measured and calculated wave attenuation rate, Km and Kc, at the onshore end of the 
permeable layer as follows: 

8-\Km-Kc\/Kc* 100 (26) 
It can be seen from Fig.8 that the error becomes more than 10% when the value 

of gHT2lh2 is larger than 30, i.e., the nonlinear property of incident waves is large. 
When the value of gHT2lh2 is less than 10, the error remains within 5%. 

Conclusion 

The main results obtained in this study are summarized as follows: 
1) The turbulent drag coefficient and the permeability in the Forchheimer type equation 
in the unsteady flow are different from those in the steady flow. In the unsteady flow, 
they depend on K-C number, and the relative acceleration. We proposed the empirical 
relation between the equivalent linear drag coefficient and K-C number through the 
unsteady permeability tests. 
2) The wave attenuation on the permeable layer is caused mainly by the energy loss in 
the permeable layer. The effect of the boundary shear on the surface of the permeable 
layer on the wave attenuation is negligibly small when the thickness of the layer is 
relatively large. 
3) The linear wave theory can apply to the analysis of wave decay on the permeable 
layer when the value of gHT2/h2 is smaller than 10. When the value oigH'Plh2 is 
greater than 30, the non-linear property of the incident waves becomes significant. In 
such case, the wave attenuation on the permeable layer is larger than that predicted by 
the linear wave theory. We can explain this reason by the fact that the amplitude of 
subharmonic component included in the incident waves is faster than that of the 
fundamental frequency component. 
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