
CHAPTER 116 

Numerical simulation of nonlinear wave interacting with 
permeable breakwaters 

T.Sakakiyama1 and R.Kajima2 

Abstract 

A fully nonlinear simulation model was developed to predict the wave transfor- 
mation interacting with a permeable breakwater. The present model was applied 
to simulate wave transformations due to a rubble-mound breakwater and due to 
a caisson breakwater covered with armor units and verified by hydraulic model 
tests. Numerical experiments were also performed to interpret the stability of 
armor units and the wave-induced pressure on the caisson through the pile of 
armor units. 

1.    INTRODUCTION 
Numerical models to predict wave motions near and inside of a rubble mound 

breakwater have been recently developed. Since some models are based on the 
linear wave theory (Holscher et al, 1989), they provide only a change of amplitude 
of a sinusoidal wave. Others are nonlinear but one-dimensional models, i.e., they 
are based on the depth-integrated equations (Wurjanto and Kobayashi,1992). 
Ohyama and Nadaoka(1991) developed a fully nonlinear model to simulate wave 
transformation on an impermeable bottom based on the potential theory. No 
fully nonlinear model including the effect of peremeablity is developed yet. 

The purpose of this paper is to develop a fully nonlinear two-dimensional nu- 
merical model to predict the wave transformation in the field which is partially 
occupied by a permeable structure. The interaction between waves and structures 
is expressed by the resistance forces in the structures, the drag and inertia forces. 
In this paper, analyzed are the wave transformations due to a rubble-mound 
breakwater and due to a caisson breakwater covered with armor units both in 
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front and at back. The computations are compared with hydraulic experimental 
results. Numerical experiments are also carried out to investigate the wave force 
acting on the armor units and the wave-induced pressure on the caisson through 
the pile of armor units. 

2.    Numerical simulation method 

2.1    Governing equation 

Sha et al.(1977) derived the quasi-continuum governing equations for conserva- 
tion of mass, momentum and energy called the porous body model(PBM). Their 
purpose was to apply these equations to the flow in a class of systems, such as 
heat exchangers and fuel-rod bundles in a nuclear reactor. 

The governing equations of PBM for incompressible two-dimensional flow are 
modified to apply it to the wave field(Sakakiyarna,1991). The inertia and the 
drag forces are introduced into the horizontal and vertical components of the 
momentum equations, and rearranging them yields the following equations: 

Continuity equation 

^ + ^=0, (1) 
Ox oz 

Momentum equation 

.  du du du d<f> ljd(-yxTxx)     d(-yzrzx)\ 
Km+x°ud-x + x>wd-z 

= -1»dx--
R° + -p\-^- + ~dz—j>   (2) 

dw dw dw d<j> 1 fd(fxTxz)     d(yzrzz)\ 
Km+Ku^+KwTz = -*&-•-ft+? 1-&- + -&-/' (3) 

where 
K = lv + (1 - lv) CM 1 
A. = 7* + (1 - 7.) CM  \ (4) 
K =lz + (1 -~tv)CM    J 

and A„ is the volume porosity and A^, A^ the horizontal and vertical components 
of the surface permeabilty, respectively. <f> = p/p is the ratio of the pressure p 
to the density of the fluid p and u, w the velocity components in the x- and z- 
direction respectively, g the acceleration due to gravity, T the viscous stress acting 
on the surface of the control volume. The drag forces are modeled by Eq. (5) and 
Eq. (6), 

R* = ;£r-(l - ~{x)uV^+^ (5) 
2Ax 

R* = Srt1 ~ 7>V^T^ (6) 
ZZiZ 

Unknown are the inertia and drag coefficients CM-, CO, which are experimentally 
determined. 
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2.2     Boundary conditions 

The continuity equation Eq. (1) and the momentum equations (2) and (3) are 
numerically solved with appropriate boundary and initial conditions. 

A kinematic boundary condition on the free surface is expressed as: 

m+usd^ = Ws (7) 

where rj is the free surface displacement, us and Ws are the horizontal and vertical 
components of the velocity on the free surface rj, respectively. 

A dynamic boundary condition at the free surface is represented by the follow- 
ing: 

p = 0 on    z = r\ (8) 

At a bottom boundary, a free slip condition is imposed. When a water depth is 
uniform, the slip conditions for the velocity u, w and the pressure p are expressed 
as follows: 

£-° (9» 
w = Q (10) 

£ = -» (ID 
The boundary condition on the pressure given by Eq. (11) is led by substituting 
Eq. (10) into the vertical component of the momentum equation, Eq. (3). In the 
case that a boundary contains an impermeable vertical wall, the similar free slip 
condition is imposed at the impermeable boundary. 

An inflow boundary works as a wavemaker. Perturbation solutions of the non- 
linear wave theory by Isobe et al.(1978) are used to give the inflow boundary 
conditions. The nonlinear wave theory applied to the inflow boundary condition 
depends on the following wave condition: 

Stokes wave 5th-order solution Us < 25 
cnoidal wave 3rd-order solution   25 <    Us 

(12) 

where Us is the shallow water Ursell parameter defined with the long wave length 
L = T^/gh in the Ursell parameter Ur. = HL2h3; 

At an outflow boundary, Sommerfeld's radiation condition is imposed: 

dF        dF ,    , 
7*+c&r = ° (14) 

where C is the wave celerity and F denotes the variable r),u,w or p.   Eq. (14) 
indicates that the variable F progresses with the phase speed C. 
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Fig. 1 Rubble-mound breakwater(A = 1/60) 

Table 1 Experimental conditions for rubble-mound breakwater(A=l/60) 

wave period 
T(s) 

wave height 
#(m) 

water depth 
h(m) 

Tetrapod 
W(kg) 6(m) e 

1.50 0.015-0.275 0.417 0.13 0.059 0.53 

The initial condition is set as the still water state. The surface displacement 
7) at t = 0 is null for a whole computational region as well as u = w = 0. The 
pressure p at t = 0 is given by the hydrostatic pressure. 

The Poisson equation for the pressure is iteratively solved by the successive 
over-relaxation(SOR) method with the given boundary and initial conditions 
mentioned above. The dynamic boundary condition on the free surface given 
by Eq. (8) is exactly satisfied in an iterative process of the pressure computation 
by applying the "irregular star" method(Chan and Street,1970). 

3.    Rubble-mound breakwater 
3.1    Experiments 

The experiments were performed by using a laboratory wave flume (78m long, 
1.2m high and 0.9m wide). The model breakwater was a conventional trapezoidal 
rubble-mound breakwater as shown in Fig. 1. The rubble-mound breakwater 
consists of single size of Tetrapods(weight W = 0.13kg) for the simplicity to 
analyze experimental results. The In Situ porosity of the breakwater is e = 0.53. 
Slopes of the breakwater surface are 1 on 1.5 for both the seaward and landward 
side surfaces. Table 1 shows the experimental conditions. The model scale is 
supposed as A = 1/60. Water depth at the breakwater is = 0.417m in the model 
scale and uniform depth h = 0.737m. Wave period was T — 1.5s. Wave height 
ranges from H = 0.015m to 0.275m. The maximum ratio of the wave height 
to the water depth H/h was up to about 0.65. The nonlinearity of the waves 
generated was remarkable but wave breaking was not included in the present 
experimental conditions. 

The reflection coefficient was estimated with the method for resolving incident 
and reflected waves proposed by Goda(1985). The displacements of a transmitted 
wave were measured at five locations. The averaged values of the five transmitted 
wave heights are used in the following analysis. 
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Fig. 2 Reflection and transmission coefficients of rubble-mound breakwater 

Table 2 Calculation condition for rubble-mound breakwater 

H(m) T(s) h{m) Li(m) Ax/Li Az/h At IT cal. region 
0.15 1.5 0.417 3.20 1/71.1 1/13.89 1/200 8.63 x Li 

In Fig. 2, the experimental results of the reflection coefficient KR and the trans- 
mission coefficient K? are shown as a function of the wave steepness H/L, where 
L is the wave length at the breakwater(/i. = 0.417m) estimated by the linear wave 
theory. As the wave steepness H/L increases, the transmission coefficient Kx de- 
creases remarkably but the reflection coefficient KR is almost constant. Basically, 
the wave reflection depends on the porosity and slightly on the inertial resistance. 
The wave transmission depends on the energy dissipation in the permeable struc- 
ture. An amount of the energy dissipation is proportional to the product of the 
friction factor and the velocity squared. 

3.2    Simulation of wave transformation 

The computation was carried out under the wave condition as shown in Ta- 
ble 2. The wave period is T = 1.5s and the progressive wave height at the 
breakwater H = 0.15m(H/h = 0.36). The horizontal distance of the calcula- 
tion region was 8.63 x Li, where Li is the incident wave length at the uniform 
depth(hi = 0.747m) obtained from the nonlinear wave theory. The wave lengths 
are Zj = 3.20m at the uniform depth and L = 2.68m at the breakwater. The 
space increments are Ax = 0.0A5m(Ax/Li = 1/71.1 and Ax/L = 1/58.9) hor- 
izontally and Az = 0.03m(Az/h = 1/13.89) vertically. The time increment is 
At = T/200. It took about one hundred minutes with the main frame computer 
HITAC 680H to calculate 4000 time steps(20 cycles x 200 steps per wave period) 
to reach steady state wave motion near the rubble-mound breakwater. 

The inertia coefficient CM and the drag coefficient Co were estimated so that 
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Tetrapod 
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Simulated result of wave transformation due to rubble-mound breakwater 

the reflection and transmission coefficients obtained in the computation might 
agree well with those in the experiment, respectively. The reflection and trans- 
mission coefficients obtained in the computation are KR = 0.15 and KT — 0.14. 
The corresponding experimental results are KR = 0.18 and KT = 0.14, respec- 
tively. The values of Cp = 1.2 and CM = 1.7 are obtained by best fitting the 
computation to the experimental result. 

Fig. 3 shows one of the computed wave velocity fields near and within the 
rubble-mound breakwater. Although a partial standing wave is formed at the 
windward side of the breakwater, the wave profile and its velocity field are rather 
similar to those of a progressive wave. It is because of a small reflection coefficient 
{KR = 0.15 in the computation). Comparing with the profile of partial standing 
wave, that of wave run-up on the breakwater slope is deformed and becomes steep. 
The wave attenuation in the permeable breakwater and the wave propagation 
through it are reasonably simulated. 

3.3    Wave force acting on armor units 

One of the most important physical phenomenon to investigate the stability of 
armor units is the movement of wave run-up on a breakwater slope. However, it 
is quite difficult to measure the velocity and acceleration along the slope during 
the wave run-up and -down in a hydraulic experiment. Numerical simulation 
is one of the most useful tools to investigate the wave run-up cooperating with 
hydraulic experiments. A well-calibrated numerical simulation method helps us 
interpret that phenomenon. 

Fig. 4 shows the hodographs of the wave run-up velocity at the two elevations 
along the armor layer. The vertical heights of the wave run-up and run-down 
are Rmax/h = 0.209 and Rmin!h = —0.128, respectively. The circles on the 
curves are time scale, which indicate the moments at every one eighth of the 
wave period. Arrows show the mean velocity vectors of the wave run-up velocity. 
The slope of armor layer of the breakwater is indicated with the dashed line. 
Above the elevation of the wave run-down, the hodographs are not closed. The 
direction of the mean flow at z/h = 0.043 is into the body of the permeable 
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Fig. 4 Velocity hodograph 

breakwater. The positive(upward) velocity perpendicular to the slope of the 
breakwater occurred below z/h = -0.101. Below the level of the wave run-down, 
z/h < Rmin/h = -0.128, velocity hodographs are closed and make ellipses as 
shown in Fig. 4(b) z/h = -0.245, and the apsis of the velocity hodograph is 
parallel to the slope of the breakwater. Getting close to the bottom, the the 
apsis becomes parallel to the horizon and the ellipse of the wave run-up velocity 
becomes flat. The velocity hodograph is affected by the impermeable flat bed. 

With the results of the numerical simulation, we discuss wave force action on 
armor units placed on the slope of the rubble-mound breakwater. Wave force 
acting on the armor units are estimated by using the Morison equation given by 
Eq. (15) with the velocity field near the armor layer. 

F(x,z,t)   =   FD(x,z,t) + Fi(x,z,t) 

=   -pCDAus(x,z,t)\us(x,z,t)\+pCMVas(x,z,t) (15) 

where FD is the drag force and Fj the inertia force. The drag and inertia co- 
efficients CD, CM of the single Tetrapod were obtained by Sakakiyama and Ka- 
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Fig. 6 Vertical profile of wave force on armor units 

jima(1990). They show the relationship between Co, CM and the Reynolds num- 
ber with a parameter of KC number. 

Fig. 5 shows the time histories of the wave forces. The drag and inertia co- 
efficients are determined as Cc = 1.0 and CM — 1-0, respectively referring to 
the results by Sakakiyama and Kajima(1990). The time history od the total 
wave force is very similar to the measured one obtained by Sakakiyama and Ka- 
jima(1990) excpet that the total wave force in Fig. 5 does not contain the buoyant 
weight of the armor unit. From the time history of the calculated wave force, the 
inertia force Fi works for a short time with a large peak behaving like a slam- 
ming force. The drag force FD has longer duration than the inertia force. It is 
considered that the slamming force is not dangerous for the stability of the armor 
units because that force works into the body of the breakwater. However, the 
breakage of slender and fragile concrete armor units is due to this type of wave 
force causing the armor units to be rocking (Burcharth el ah, 1991). 

Fig. 6 shows the profiles of the wave force along the slope of the breakwater. 
The symbols indicate the peak values of the inertia, drag and total forces both 
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Fig. 7 Caisson breakwater(A = 1/60 and 1/15) 

Table 3 Experimental conditions for caisson breakwater in prototype 

wave period 
T(s) 

water depth 
h{m) 

wave height H(m) 
A =1/60 A =1/15 

15.5 25.0 1.08-17.64 1.08-16.92 

during the wave run-up in Fig. 6(a) and during run-down in Fig. 6(b). The 
axis of abscissa indicates the ratio of the wave force to W sin#, where W is the 
buoyant weight of an armor unit, 9 the angle of breakwater slope. The ratio 
of the value of unity means the incipient condition of the armor unit when the 
friction force between armor units is neglected. The computational results shows 
that the profiles of the drag, inertia and total forces have the maximum values 
near the still water level during the wave run-up. During the wave-run down, the 
maximum value of the total wave force is found close to that of the drag force 
at z/h ~ —0.2. It agrees with the fact that the armor units near the still water 
level are the most unstable as we have experienced in hydraulic experiments. 

4.     Caisson breakwater covered with armor units 
4.1     Experiments 

The experiments on a caisson breakwater covered with armor units were per- 
formed by using both a large wave flume(205m long, 6.0m deep and 3.4m wide) 
and a small one(78m Jong, 1.2m deep and 0.9m wide). The model scales were 
1/15 and 1/60, respectively. Fig. 7 shows the prototype breakwater of which 
models were used in the scale model experiments. A narrow caisson is placed 
in the breakwater body to reduce transmitted waves. The core material consists 
of stones(MK = 50kg to 200kg in prototype scale) of which porosity is estimated 
as e =0.4. The weights of armor units are W = 80t in the armor layer at the 
windward side, W = lit in the filter layer and W — 28t in the armor layer at the 
leeward side. The corresponding weights of the armor units in the 1/15-scale ex- 
periment were 20kg, 6.8kg and 10.0kg. Those used in the 1/60-scale experiment 
were 0.37kg, 0.054kg and 0.13kg. The In Situ porosity of armor and filter layers 
in the breakwater is e — 0.50. The armor layer at the leeward side is placed to 
reduce multi-reflected waves in a harbor. 

Table 3 shows the experimental conditions indicated in equivalent prototype 
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Table 4 Calculation condition for caisson breakwater 

#(m) T(s) A(m) Li(m) Ax/Li Az/h At IT cal. region 
9.00 11.6 25.0 191.24 1/114.7 1/15.0 1/200 8.48 x L 

Tetrapod 

-1.00 

«/v^=0-5     7.00 7.25 7.50        X/Lj       7.75 

Fig. 8 Simulated result of wave transformation due to caisson breakwater 

values. The reflection and transmission coefficients for various wave Conditions 
(prototype wave conditions of incident wave height H = lm to 17m, period 
T — 15.5s and water depth h = 25.0m) were obtained in the same way. 

Measurements include also wave pressures on the seaward wall of the caisson 
covered with the permeable structures at 10 points in the large-scale experiments 
and at 6 points in the small-scale experiments. 

4.2    Simulation of wave transformation 

The computation was carried out under the wave conditions of the small scale- 
experiment such as the wave period T = 1.5s, the wave height at the breakwater 
H = 0.15m(H/h = 0.36). Difference between the small- and large-scale condi- 
tions is the values of the inertia and drag coefficients which are functions of the 
Reynolds number and by which the scale effect is considered in the numerical 
simulation. 

The computational condition is shown in Table 4 indicated in the prototype 
values. The horizontal distance of the calculation region was 8.48 x L[, where 
L] is the incident wave length at the uniform depth(/j/ = 44.2m) obtained from 
the nonlinear wave theory. The wave lengths are Lj = 191.24m at the uniform 
depth and L = 161.16m at the breakwater. The space increments are Ax = 
Az = 1.667m(Ar/L, = 1/114.7 and Ax/L = 1/96.7 horizontally, Az/h = 1/15.0 
vertically). The time increment is At = T/200. It took about four hours with 
the main frame computer HITAC 680H to calculate 4000 time steps(20 cycles X 
200 steps per wave period) to gain the steady state wave motion near the caisson 
breakwater. 

The reflection and transmission coefficients obtained in the calculation for the 
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Fig. 9 Comparison of wave pressure between calculation and experiment 

small-scale model are KR = 0.18 and KT = 0.010. The corresponding small- 
scale experimental results are KR = 0.21 and KT = 0.015, respectively. The 
computation which reproduced the experiment best gives CM = 1-2 and CD = 0.9. 

Fig. 8 shows the computed wave velocity field and the surface profile for the 
small-scale model when the wave runs up on the slope at the windward side of 
the permeable breakwater. The wave surface profile is deformed on the slope of 
the armor layer resulting in a steeper surface at the leeward side than that at the 
windward. Velocity of the wave front just outside the armor layer is increased 
according to the wave deformation. The velocity inside the armor layer is small 
and discharge also smaller than that outside the armor layer. The difference of 
the velocity between inside and outside the armor layer is large and the flow is 
concentrating to the surface of the armor layer. It is concluded that the velocity 
field is reasonably simulated as a whole. 

The inertia and drag coefficients CM and CD in the computation were estimated 
so that the reflection and transmission coefficients obtained by the experiment 
might agree well with the those obtained by the computation, respectively. In 
order to verify the present method, it is necessary to compare other values between 
the experiment and the computation. Thus a wave-induced pore pressure is 
compared between the computed and measured results as shown in Fig. 9, where 
w is the specific weight of fluid. It is found that the quantitative agreement of the 
computed pressure profile with the measured one is very good for the small-scale 
experiment. The large-scale experimental result is also shown in Fig. 9. The scale 
effect on the pressure will be discussed in the following subsection. 

4.3     Scale effect of wave transformation and pressure 

Fig. 10 shows the results of the reflection and transmission coefficients obtained 
through the large- and small-model scale experiments. The factor of the model 
scale according to the Froude law is 4(the large-model scale is 1/15 and the small 



1528 COASTAL ENGINEERING 1992 

1.0 

„E-<0.B 

fc< 0.6 

0.4 h 

0.2 

0.0 

~i—i—i   i i i i i 

0.002 

© 

A 

i A i i 

"i 1—i—i   i i i i i 

KR KT A T(s) ft(m) 
O • 1/15 3.0 1.667 
A • 1/60 1.5 0.417 

o      o u 0 
( 

A A A AA , 

1 i titiB III 
0.01     0.02 

H/L 
0.1       0.2 

Fig. 10 Scale effect of reflection and transmission coefficients 

one 1/60). It is found that the reflection coefficients of the large-scale experiments 
are larger than the small ones. The transmission coefficients of the large-scale 
experiments are larger than small-scale one, although the difference is very small. 
Consequently, the energy dissipation rate of the large-scale experiments is less 
than that of the small-scale ones. 

The tendency of the scale effect on the wave pressure is opposite to that on the 
wave reflection as shown in Fig. 9 on the pressure profiles comparing between the 
experimental results with the large- and small-scale models. That is, the wave 
pressures in the small-scale hydraulic experiments are larger than those in the 
large-scale one. 

It is concluded from the results of the scale effects on the wave reflection and 
the wave pressure that the wave pressure is small when the wave reflection is 
large. It is very natural and explained as follows: When the reflection coefficient 
is large, a small amount of wave penetrates in a permeable structure and onto 
the caisson. As the result, the wave pressure becomes small. 

The scale effects on the wave reflection and wave pressure mentioned above is 
explained with the following numerical experiments. Fig. 11 shows the effect of 
the inertia coefficient on the wave pressure, when the drag coefficient is constant 
as CD=0.9. The computation are performed by varying the inertia coefficient CM 

with 1.2, 1.5 and 1.7. As the inertia coefficient CM increases the wave pressure 
decreases. On the other hand, the reflection coefficient increases as the inertia 
coefficient CM increases. The transmission coefficient decreases very slightly. 
The reflection and transmission coefficients are less sensitive to the change of the 
inertia coefficient CM than the wave pressure. 

As the inertial resistance described by the factor A„ = 7„ + (1 — JV)CM defined 
as Eq. (4) increases, the wave reflection from the armor and filter layers increases. 
Consequently, the less part of wave transmits in the permeable structure and the 
wave pressure decreases. As the Reynolds number increases under the condition 
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that KC number is constant, the inertia coefficient increases according to the 
Froude law for scaling. 

Fig. 12 shows the effect of drag coefficient on the wave pressure, while the 
inertia coefficient is constant as CM = 1-5. The drag coefficient Co is selected 
as Co = 0.3,0.6 and 0.9. As the drag coefficient increases, the wave pressure 
decreases. It is caused by an increase of the wave energy dissipation in the 
permeable structure. 

As explained above, both the drag and inertia coefficients influence the scale ef- 
fect on the wave reflection, transmission and also the pressure. These scale effects 
are reflected to the numerical model through CM and CD which are functions of 
the Reynolds number. 
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5.     Conclusions 
A fully nonlinear numerical model has been developed to simulate the wave mo- 

tion near and in a permeable breakwater. The simulated results were compared 
with hydraulic experimental ones using two types of permeable breakwaters, a 
rubble-mound breakwater and a caisson breakwater covered with armor units. 
The present model can reproduce the wave reflection and transmission, and also 
the pressure on the caisson. Wave profiles and velocity fields near and in the 
permeable breakwaters were realistically simulated. Wave force acting on ar- 
mor units was estimated by Morison equation with the computed velocity. The 
maximum wave force was found near the still water level during wave run-up. 

The scale effects on the wave reflection, transmission and wave-induced pore 
pressure were demonstrated by the hydraulic experiments. Computation inter- 
prets these scale effects. As model scale increases the drag coefficient decreases 
and the inertia coefficient increases. As the result, the wave energy dissipation 
due to the drag force decreases while the wave reflection increases due to the iner- 
tial resistance. Consequently, the scale effect on the wave-induced pore pressure 
is canceled by two opposite effects of fluid resistance. 

The drag and inertia coefficients were determined so that the reflection and 
transmission coefficients of the experiment fit with those of the computation, 
respectively. A fundamental experiment, an oscillation flow test using U-tube 
tank, for instance will be required to estimate the inertia and drag coefficients. 
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