
CHAPTER 98 

IRREGULAR WAVE INTERACTION WITH PERMEABLE SLOPES 

Nobuhisa Kobayashi1, and Andojo Wurjanto2 

ABSTRACT: A one-dimensional, time-dependent numerical model is developed to simulate 
the flow over a rough permeable slope as well as the flow inside a permeable underlayer of 
arbitrary thickness for specified normally-incident irregular waves. The numerical model has 
been shown to be capable of predicting the time series and spectral characteristics of the re- 
flected waves and waterline oscillations on a 1:3 rough slope with a thick permeable underlayer. 
The computed results are examined in detail to quantify the hydrodynamic processes which 
are difficult to measure in experiments. The computed results for the rough permeable and 
impermeable slopes are also compared to quantify the differences caused solely by the thick 
permeable underlayer. 

INTRODUCTION 

The permeability effects on wave run-up and reflection as well as armor stability have been 
regarded by previous researchers to be important for the design of highly permeable coastal 
structures'such as berm breakwaters. Our quantitative understanding of the hydrodynamic 
processes involved with irregular wave interaction with permeable slopes is still rudimentary, 
although extensive hydraulic model tests have been performed. 

Kobayashi and Wurjanto (1990) developed a numerical model for predicting the flow on a 
rough permeable slope as well as the flow in a thin permeable underlayer for normally incident 
irregular waves. This numerical model was limited to a thin permeable underlayer because 
it neglected the region landward of the waterline on the rough slope and the inertia terms 
in the horizontal momentum equation for the flow in the thin permeable underlayer. This 
numerical model turned out to be of limited practical use since the permeability effects of the 
thin permeable underlayer were found to be minor or negligible. Wurjanto and Kobayashi 
(1992) developed an improved numerical model by eliminating most of the shortcomings of the 
previous model as explained in the next section. 

NUMERICAL MODEL FOR THICK PERMEABLE UNDERLAYER 

Fig. 1 shows the symbols used in the improved numerical model where the prime indicates 
the dimensional variables. In Fig. 1, x' = horizontal coordinate taken to be positive landward 
with x1 = 0 at the toe of the slope; z' = vertical coordinate taken to be positive upward with 
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incident 
waves 

Figure 1: Definition Sketch for Numerical Model for Thick Permeable Underlayer 

z' — 0 at the still water level (SWL); z'b = z' — coordinate of the upper boundary of the 
permeable underlayer excluding the primary cover layer whose roughness effect is included by 
the bottom friction factor /' for the flow over the rough slope; z' = z' - coordinate of the lower 
boundary of the permeable underlayer which is assumed impermeable; d't = water depth below 
SWL at x' = 0 where it is assumed that z'b = z'p at x' = 0; rf = free surface or water table 
elevation above SWL; x's = x' - coordinate of the upper water line defined as the location of 
rf = z'b; x'w = x'- coordinate of the lower waterline defined as the location of rf = z'; h' = 
water depth above the permeable slope given by b! = (rf — z'b) in the region 0 < x' < x's\ u' 
= depth-averaged horizontal velocity above the permeable slope; h' — water depth inside the 
permeable underlayer given by h'p = (z'b — z') in the region 0 < x' < x's and h'p = (r)''— z'p) 
in the region x's < x' < x'w; q'b — volume influx per unit horizontal area into the permeable 
underlayer which is taken to be positive downward; and u'p = vertically-averaged horizontal 
discharge velocity inside the permeable underlayer where the actual velocity is given by u'p/np 

with np — porosity of the permeable underlayer. 

Computation is performed using the dimensionless variables and parameters defined as 

t    = 
t'                  x'                       x's xw 

T> ' X~ T'vW ' '" ~~ T'-sfW1 ' -1"" - T'JW 
z'                  r'                  *'                  rV 
—   •    „   -       b     •    y     -    ~P    •   rl    -       * 

H"   " " H"   v ~ H> '   ' ~ H> 
i             h' 

u'                T'q'b                   u'p 

^7F ' ib ~ PqH> ' Up - Pq^IF 
,   Pq  — npPu 

h„ = 
H' 
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Pu      = 
LA>(1 - n„) 
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«o(l • npfv 
PaPud'* 

(4) 

in which t1 = time; T" and H' = characteristic wave period and height used for the normalization, 
respectively; g = gravitational acceleration; pq and pu = dimensionless parameter expressing 
the order of magnitude of u'p/u' and (u'p/np)/u', respectively; v = kinematic viscosity of the 
fluid; d'p = characteristic stone diameter in the permeable underlayer; ct0 and /?0 = empirical 
constant associated with the laminar and turbulent flow resistance, respectively (Madsen and 
White 1975); and fi = dimensionless parameter expressing the order of magnitude of the laminar 
flow resistance as compared to the turbulent flow resistance. 

The numerical model of Wurjanto and Kobayashi (1992) computed m = uh, h = (rj-Zf,), qi 
and mp = puhpup in the region 0 < x < x„ where hp — (zj —2P), as well as mp and hp = (r) — zp) 
in the region xs < x < xw as a function of t and x using the one-dimensional, time-dependent 
equations of conservation of mass and ^-momentum for the flow fields over and inside the 
permeable underlayer. It is assumed that mp and hp are continuous at x = xs. The initial 
time t = 0 for the computation marching forward in time is taken to be the time when the 
specified incident wave train arrives at x = 0 and there is no wave action in the region x > 0. 
At the seaward boundary x = 0 where hp = 0 is assumed, the normalized incident wave train, 
rji — rf'jH', is prescribed as a function off and the normalized reflected wave train, t]r = rj'r/H', 
is computed as a function of t from the characteristics advancing seaward. 

The numerical model is compared with the three test runs denoted by runs PI, P2 and 
P3 conducted by Cox (1989). The upper boundary of the permeable gravel underlayer was 
located at z'b = (—d't + ai'tanfl') with d't — 0.40 m and cot0' = 3. Its lower boundary was 
situated at z'p = -d't for 0 < x' < 0.566 m and z'p = -d't + (x' - 0.566) tanO' for 0.566 m 
< x' where its thickness perpendicular to the impermeable base was 0.566sin(?' = 0.179 m. 
The single layer of the gravel whose thickness was the median gravel diameter d'p = 2.1 cm is 
regarded as the primary cover layer. The other input parameters associated with (4) are taken 
as np = 0.48, v = 0.01 cm2/s at 20°C, a0 = 1140 and /30 = 2.7. 

The significant wave height H's and the mean period T'm of the zero upcrossings of the 
measured incident wave train are taken as the height H' and the period T' used for the nor- 
malization of the governing equations. The values of H' = H's and T' = T'm for the three runs 
are listed in Table 1. The other values listed in Table 1 are as follows: £ = surf similarity 
parameter based on H1, T" and cot#' = 3; tmax = normalized duration of the measurement 
and computation; Hm0 = spectral estimate of the normalized significant wave height; TP = 
normalized spectral peak period; £p = surf similarity parameter based on the spectral parame- 
ters H'mo = HmoH' and Tp — TpT'; and /' = bottom friction factor estimated from the rough 
impermeable slope tests. The values of Hmo and Tp are obtained from the normalized incident 
wave spectrum Si(ft) with /„ = normalized frequency defined as /» = f'tT' computed from 
rji(t) for 0 < t < tmax for each run. The frequency range of resolution of the measured incident 
and reflected waves based on three wave gages was 0.12 < /* < 1.6 for run PI, 0.15 < /» < 2.0 
for run P2, and 0.19 < /„ < 2.6 for run P3 (Kobayashi et al. 1990). Table 1 also lists the values 
of p, and fi defined in (3) and (4). For these runs, the discharge velocity inside the permeable 
underlayer is generally small relative to the fluid velocity over the permeable slope, while the 
laminar flow resistance in the permeable underlayer is small as compared to the turbulent flow 
resistance. 

Wurjanto and Kobayashi (1992) has shown that the numerical model can predict the time 
series and spectral characteristics of the measured reflected waves and waterline oscillations 
on the 1:3 permeable slope where the waterline meter measured the temporal variation of the 
elevation Z'r above SWL of the intersection between the instantaneous free surface z' = rf and 
the straight line z' = (z'b + S'r) with S'r ~ 2.75 cm in the experiment. As a result, additional 
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Table 1: Three Test Runs Compared with Numerical Model 

Run 
No. (cm) 

V 
(sec) 

t tmax limo TP if /' Pq V 

PI 
P2 
P3 

6.85 
5.35 
4.57 

1.08 
1.36 
1.74 

1.72 
2.44 
3.39 

170.98 
268.98 
210.01 

1.01 
1.03 
1.06 

1.09 
1.56 
1.58 

1.88 
3.75 
5.22 

0.05 
0.05 
0.10 

0.043 
0.041 
0.038 

0.074 
0.088 
0.104 

computed results are presented hereafter to elucidate the interaction processes of irregular 
waves with the rough permeable slope with the thick permeable underlayer. In the following, 
the computed results for run P2 are shown as typical results but the computed results for runs 
PI and P3 are similar unless stated otherwise. 

Fig. 2 shows the computed spatial variations of r), u, pqqt and mp = puhpup at t = 125.0, 
125.5 and 126.0 where the shaded area shown with the variation of rj corresponds to the per- 
meable underlayer. Comparison of the variations of t) and u reveals the sequence of water 
uprushing and downrushing on the permeable slope from t = 125.0 to t = 126.0. The variations 
of pqqb indicate water flowing into the permeable underlayer during wave uprush and water 
outflow in the region below the trough of the free surface. The variations of mj show the flux 
inside the permeable underlayer which appears to be driven mainly by the hydrostatic pressure 
gradient related to —drj/dx as is the case with the thin permeable underlayer (Kobayashi and 
Wurjanto 1990). 

Fig. 3 shows the computed normalized spectra S" and S% of the upper and lower waterline 
oscillations, respectively. The upper waterline is taken as the normalized waterline elevation 
Zr = Z'r/H' on the permeable slope, whereas the lower waterline corresponds to the normalized 
elevation above SWL of the intersection between the instantaneous water table z = r\ and the 
straight line z = (zp + 6'r/H') with 6'r = 2.75 cm parallel to the impermeable slope z = zp. 
Fig. 3 reveals that the permeable underlayer attenuates the high-frequency wave components 
significantly but damps the low-frequency wave components little as expected. 

Fig. 4 shows the spatial variations of ra = uh, pq ql and np m^ = pq uphp where the 
overbar indicates the time averaging over 0 < t < tmax • The time-averaged volume flux per unit 
horizontal area, </j, is into or out of the permeable underlayer above or below the still waterline 
located at Zj = 0, respectively, where z\, = 0 at x — 1.22 for run P2. Correspondingly, the time- 
averaged volume flux m and tn^ above and inside the permeable underlayer are landward and 
seaward, respectively, in the vicinity of the still waterline. The overall mass balance requires 
that q~b, m and m^ must approach zero at x = 0. In Fig. 4, m approaches a very small 
negative value at x = 0. This implies that the numerical model may not predict the small time- 
averaged quantities very accurately partly because they are small relative to the corresponding 
time-varying quantities. 

COMPARISON BETWEEN PERMEABLE AND IMPERMEABLE SLOPES 

The additional computed results for the 1:3 rough permeable slope are presented hereafter 
in comparison with the computed results for the corresponding impermeable slope without the 
permeable underlayer. These runs corresponding to runs PI, P2 and P3 are denoted by runs II, 
12 and 13. The numerical model for impermeable slopes was shown to be capable of predicting 
the time series and spectral characteristics of the reflected waves and waterline oscillations on 
the 1:3 rough impermeable slope (Kobayashi et al. 1990). The measured reflected waves and 
waterline oscillations on the permeable and impermeable slopes were compared by Kobayashi et 
al. (1991) who found it very difficult to generate identical incident wave trains for the permeable 
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Figure 2: Computed Spatial Variations of ih u, pgqb and mp = pu hp up at t = 125.0, 125.5 
and 126.0. 
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Figure 4: Time-Averaged Volume Fluxes m, pqqi and n. 
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Table 2: Computed Values of r, Zr, R3, Rmax and Nse for Permeable (P) and Impermeable 
(I) Slopes. 

Run 
No. 

r Zr Rs ftmax Nsc Ns 

P I P I P I p I P I 
1 
2 
3 

0.09 
0.15 
0.26 

0.20 
0.55 
0.66 

0.06 
0.05 
0.05 

0.12 
0.14 
0.11 

0.57 
0.78 
0.94 

0.91 
1.52 
1.72 

1.01 
l.n 
1.85 

1.48 
2.20 
3.24 

1.16 
1.49 
1.43 

0.49 
0.38 
0.45 

2.29 
1.78 
1.52 

and impermeable slope tests in a wave tank. In the present comparisons, the measured incident 
wave train for run PJ with J = 1, 2 and 3 is specified as input to the computation for run IJ 
so that the incident wave trains for runs PJ and IJ become identical. Moreover, the numerical 
models allow us to examine the permeability effects on the quantities which are very difficult 
to measure. 

Fig. 5 compares the computed spatial variations of i]maxt fj and r}min as well as umax, u 
and umin for runs P2 and 12 where the subscripts max and min indicate the maximum and 
minimum values with respect to t over 0 < t < tmax. The presence of the thick permeable 
underlayer reduces the vertical range of the free surface elevation rj and the magnitude of the 
depth-averaged horizontal velocity u on the slope. The wave setup fj on the impermeable slope 
approaches r\max asymptotically since h = (fj — zb) > 0 in the region reached by uprushing 
water during 0 < t < tmax, whereas the wave setup fj on the permeable slope is connected to 
the wave setup inside the permeable underlayer. The negative value of u on the impermeable 
slope is related to undertow on a beach (Kobayashi et al. 1989), whereas the time-averaged 
fluxes for the permeable slope shown in Fig. 4 result in the positive value of u above the still 
waterline located at x = 1.22 for runs P2 and 12. This suggests that the permeability may 
affect the net cross-shore transport of gravel and sand. 

Fig. 6 shows the computed reflection coefficient rasa function of the normalized frequency 
/» for runs P2 and 12 where r is defined asr= [Srif^/Siif,)]1/2 with Sr = normalized reflected 
wave spectrum calculated from r/r(t) for 0 < t < tmax. The computed values of r exceeding 
unity for run 12 may not be correct since r should not exceed unity unless additional waves 
propagating seaward are generated in the region x > 0. Fig. 6 indicates that the permeable 
underlayer dissipates the incident high-frequency wave components but damps the incident low- 
frequency wave components little. This is consistent with the computed results shown in Fig. 
3. The average reflection coefficient f may be defined as r = [(mjf/ra,]1'2 where m0 = zero 
moment of 5j(/»); and (m0)r = zero moment of 5r(/»). The computed values off for the six 
runs listed in Table 2 increase with the increase of the surf similarity parameter £ and (p given 
in Table 1. Comparison of the values of f for the permeable and impermeable slopes for given 
£ and £p indicates that the thick permeable underlayer reduced f by a factor of more than two. 
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Figure 5: Computed Spatial Variations of rjmax, r\ and r\min as well as umax, u and um{n. 
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Figure 6: Reflection Coefficient r as a Function of Normalized Frequency /„. 

Fig. 7 shows the computed spectrum S¥ of the normalized upper waterline elevation above 
SWL, Zr(t), for 0 < t < tmax. The permeable underlayer reduces both high-frequency and 
low-frequency wave components unlike the computed results shown in Figs. 3 and 6. The 
interaction of uprushing and downrushing water on the impermeable slope seems to generate 
additional low-frequency wave components, whereas the permeable slope appears to absorb the 
incident waves with little water uprushing as shown in Fig. 2. The computed time series Zr(i) 
for 0 < i < tmax are also analyzed using the zero upcrossing method described by Kobayashi 
et al. (1990). Table 2 lists the computed values of Zr, Rs and Rmax for the six runs where 
Zr = time-averaged upper waterline elevation above SWL; R, = normalized significant run-up 
defined as the average of the highest one- third run-up elevations above SWL; and Rmax = 
maximum run-up elevation above SWL during 0 < t < tmax. R, and Rmax increase with the 
increase off and £p given in Table 1. Moreover, the thick permeable underlayer reduces Zr, R, 
and Rmax by a factor of slightly less than two. Fig. 7 also shows the exceedance probability P 
as a function of Rp/Rs with Rp = normalized run-up corresponding to the specific value of P 
together with the Rayleigh distribution. The probability distribution of the normalized run-up, 
Rp/Rs is affected little by the permeable underlayer whose effect on run-up may be accounted 
for by R„ only. 

Fig. 8 shows the computed spatial variations of E, F, Dp and D = (Dj + D%) for the 
flow over the permeable and impermeable slopes where E = normalized specific energy; F 
— normalized energy flux per unit width; Dp = normalized energy flux per unit horizontal 
area into the permeable underlayer which is zero for the impermeable slope; Dj and Dg = 
normalized rate of energy dissipation per unit horizontal area due to bottom friction and wave 
breaking, respectively. The one- dimensional energy equations and associated quantities have 
been explained by Kobayashi and Wurjanto (1990) and Wurjanto and Kobayashi (1992). For 
the permeable slope as compared to the impermeable slope, E does not increase much near 
the still waterline and the decrease of F starts from x = 0, while Dp is dominant as compared 
to D calculated from D = (-dF/dx - Dp). For the impermeable slope with Dp = 0, the 
comparison of DB and Dj for runsjl, 12 and 13 indicates that DB is dominant for run II and 
Dj is dominant for run 13, while DB and Dj are equally important for run 12 as shown in Fig. 
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Figure 7: Computed Upper Waterline Spectrum S^ and Exceedance Probability P of Normal- 
ized Run-up Rp/Rs as Compared with Rayleigh Distribution. 
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Figure 8: Time-Averaged Energy Fluxes and Dissipation Rates for Flow over Permeable and 
Impermeable Slopes. 
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Finally, the permeability effect on armor stability is examined. Kobayashi and Wurjanto 
(1990) expressed the hydraulic stability condition against sliding or rolling of an armor unit on 
a rough permeable slope in the form 

Ns = H'(s - l)"1 {ps/W')1'3 < NR(t, zb) (5) 

where N$ = stability number; H' — characteristic wave height taken as the significant wave 
height H's, s = specific density of the armor units; p — fluid density; W' = median mass of 
the armor units; and NR = armor stability function varying with the normalized time t and 
the armor location on the slope represented by zj. For the gravel used in the experiment, s = 
2.7, W' = 14.8 g and (W'/ps)1/3 = 1.76 cm. The values of NR at given t are computed in the 
region h' > d'p since the armor units are assumed to be fully submerged. The local stability 
number NSx(zb) is defined as the minimum value of JVR(<,Z}) at given zj, during 0 < t < tmax. 
The critical stability number Nsc is defined as the minimum value of N,x(zi,) for the region 
z6 > — dt. Table 2 lists the computed values of Nsc for the six runs together with the measured 
value of N, for each run. Fig. 9 shows the spatial variations of Nse(zh) for runs P2 and 12 with 
N, = 1.78. 

The numerical model predicts that the gravel units in the region N$x < N, should slide 
or roll. Cox (1989) observed that loose gravel units on the permeable slope remained at their 
initial locations, whereas those on the impermeable slope were dislodged during the tests. Fig. 
9 indicates the intense movement of loose gravel units in the wide region of the impermeable 
slope but the limited movement of loose gravel units on the permeable slope. As a result, the 
computed results are qualitatively consistent with the observations and the empirical formula 
of van der Meer (1988), although the sliding or rolling of gravel units may not result in the 
dislodgement of the gravel units from their initial locations. Fig. 9 also shows the spatial 
variations of rj, u, du/dt and NR at the time t = tsc when the minimum value of NR with 
respect to zj, equals the critical stability number Nsc. For run 12 with tsc = 91.83, the critical 
armor stability occurs during wave uprush when the landward fluid velocity and acceleration 
are very large. For run P2 with tsc = 197.66, the critical armor stability occurs during wave 
downrush when the seaward fluid velocity and acceleration are large. It is noted that the 
stability analysis of Kobayashi and Wurjanto (1990) neglects the direct effect of qi, on the 
armor stability and may not be very accurate. 

CONCLUSIONS 

The numerical model developed for predicting the flow over a rough permeable slope and 
the flow inside a permeable underlayer has been used to elucidate the interaction processes 
of irregular waves with a thick permeable underlayer. The computed results have also been 
compared with those for the corresponding rough impermeable slope to examine the differences 
caused solely by the permeable underlayer. The thick permeable underlayer has been shown 
to increase the armor stability considerably and reduce the wave reflection and run-up signifi- 
cantly. Most of the computed results presented herein have been observed visually or described 
qualitatively by previous researchers. The numerical models yield quantitative data with high 
spatial and temporal resolutions. The numerical models also allow one to perform sensitivity 
analyses easily by changing only one input parameter in each numerical simulation. For exam- 
ple, it may be important for the design of berin breakwaters to examine the sensitivity of the 
computed results to the thickness, porosity and stone diameter of the permeable underlayer. 
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