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NUMERICAL MODELING FOR WAVE ENERGY DISSIPATION WITHIN 
POROUS SUBMERGED BREAKWATERS OF IRREGULAR CROSS 

SECTION 

George Z. Gu1 and Hsiang Wang2 

Abstract 

In the design of a porous submerged breakwater, the maximum wave energy 
dissipation within the breakwater is desirable. To calculate the energy 
dissipation, the process is simulated numerically in this study using the 
Boundary Integral Element Method (BIEM). The breakwater is idealized as 
a homogeneous porous medium and the flow inside the breakwater is 
modeled by a non-linear porous flow model which is linearized iteratively 
based on the equivalent energy principle in the numerical model. To fully 
explore the advantage of BIEM, a boundary integral expression for wave 
energy dissipation developed in an earlier work by the authors is used to 
replace the traditional domain integral expression. As a result, the efficiency 
of the numerical model is greatly increased. The numerical model was run for 
a number of cases and the results show that the maximum wave energy 
dissipation can be achieved at a practical permeability level (or stone size). 
The good agreement between the numerical results and the experiment data 
for non-breaking waves indicates that the wave energy dissipation within 
porous breakwaters can be adequately predicted by the numerical model. 

Introduction 

Due to increasing demand for beach protection in recreational areas, 
submerged breakwaters may become more and more popular over traditional 
sub-aerial ones. The advantages of submerged breakwaters as compared to 
sub-aerial ones are of low cost, aesthetics (they do not block the view of the 
ocean) and effectiveness in triggering early breaking of the incident waves. 
More general, a low crest sub-aerial breakwater may become submerged 
during storm surge or after being damaged. 
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In the design of a porous submerged breakwater, one of the important 
aspects is to assess the energy dissipation within the structure due to 
turbulence and friction. Maximum energy dissipation (equivalently, minimum 
wave transmission) is usually desired. 

The wave transmission, reflection and energy dissipation has been studied 
experimentally by Dick (1968), Dattatri (1978), Seelig (1980) and many other 
investigators. The measurements in these model tests were generally limited 
to the free surface oscillations on the weather and lee side of a submerged 
breakwater. As pointed out by Kobayashi et al. (1989), such measurements 
do not reveal the hydrodynamic processes over and within porous submerged 
breakwaters. In terms of theoretical modeling, a great deal of contributions 
have been made by Sollitt et al. (1972), Madsen (1974), Ijima et al. (1974), 
Sulisz, 1985 and others to the problem of wave interaction with sub-aerial 
porous breakwaters. Kobayashi (1989) successfully modeled the wave 
interaction with impermeable submerged breakwaters. However, the process 
of wave energy dissipation within porous submerged breakwaters has not 
been investigated thoroughly enough to guide practical designs. 

In this paper, a numerical model using the Boundary Integral Element 
Method (BIEM) is developed to model wave interaction with porous 
submerged breakwaters. In general, wave attenuation over a porous 
submerged breakwater is affected by three mechanisms: reflection by the 
structure, breaking over the structure and damping due to percolation inside 
the porous structure. The wave energy dissipation are mainly caused by wave 
breaking and flow percolation. The main focus of this study is on the process 
of wave energy dissipation due to percolation. 

The submerged breakwater is modeled as an infinitely long, shore parallel 
structure. The porous body of the structure is assumed to be a homogeneous 
porous medium, and described by the non-linear unsteady percolation model. 

Governing Equations and Boundary Conditions 

The computation domain of the problem consists of two sub-domains, the 
fluid domain and the domain(s) of the submerged porous media (more than 
one porous domain if the breakwater has multiple layers). In the fluid 
domain, the water is considered inviscid and incompressible. The flow 
induced by gravity waves is assumed irrotational. Thus, the governing 
equation in this domain, for the velocity potential function $, is the Laplace 
equation, 

V2$ = 0 (1) 
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with fluid velocities being defined as 

" = s; <3) 

Further more we assume sinusoidal wave motion such that 

$ = <j>eiat (4) 

While in the porous domain, the viscosity of the fluid cannot be ignored since 
the flow is largely within the low Reynolds number region. The flow induced 
by sinusoidal linear waves can be described by the non-linear unsteady 
porous flow model used by Sollitt and Cross (1972) 

1 1 O 
- -VP(z, y, z, t) = a(- + i/3+    J-— | q(x, y, z,t)\) q(x, y, z, t)      (5) 

p it yavR 

or 

- ~Vp(x,y,z,t) = a(f1 + f2 \q\)q (6) 

with 
iat $(x,y,z,t) = tp(x,y,z)e 

where $ can be P or q or any other wave field variable; P(x, y, z, t) is the 
pore pressure function inside porous media; v and p are the kinematic 
viscosity and the density of sea water, respectively; R is the permeability 
parameter defined as 

v 

Kv is the intrinsic permeability of the porous media, measured under the 
conditions of steady flows; it is empirically related to particle diameter by 
(Engelund, 1953) 

P     «o(l-n)3 [) 

where a0 is an empirical constant and it is taken to be 570; n is the 
volumetric porosity; a is the wave frequency; /3 is the inertial resistance 
parameter and C; is a non-dimensional constant characterizing the 
non-linear resistance. In this study, fi = 4.6 and C/ = 1.0, as determined by 
a seabed experiment (Gu and Wang, 1990, Gu, 1990); q(x,y,z,t) is the 
complex vector of discharge velocity in the porous medium. 
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Due to the mathematical difficulties in applying the non-linear model 
directly, the common practice is to linearize Eq.(6) such that 

 Vp = cr/o q 
P 

(8) 

where f0 is the linearized resistance coefficient which is a constant for a 
particular problem. This coefficient can be obtained by using the principle of 
equal energy dissipation, as will be discussed later. At this point, we assume 
that /o is a known complex constant. Substitution of the above equation into 
the continuity equation gives the Laplace equation for p, 

V2p = 0 

The boundary conditions for the fluid domain are: 

dz ~ g 

dn 
On the lateral boundary of lee side, x = I' 

d<j>      d<j> 

2 = 0 

= -h{x) 

dn      dx 
= -ik'< with     gk' tanh k'h' = a 

where h! is the water depth at x = V. 
While on the lateral boundary of weather side, x — — /, 

dn 
: 2ik(f>i — ik(j>    with    gfctanh kh — a2 

(9) 

(10) 

(11) 

(12) 

(13) 

in which </>/ is the incident wave potential and h is the water depth at x = — I 
For the porous domain(s), 

dp 

dn 
= 0 

d<f> 

dn 
1   dp 

pafo dn 

Pi 

on impermeable surface(s) (14) 

between fluid and porous domains (15) 

between two different porous domains    (16) 

where i and j refer to different porous domain. 

{f0dn>> (fodnh 
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Numerical Formulation of Boundary Integral Element Method 

The boundary value problem stated in the previous section is solved 
numerically using the boundary integral element method (BIEM or BEM) 
owing to the irregular geometries of porous submerged breakwaters. The 
method has been proved to be a powerful and convenient method for 
problems governed by the Laplace equation. 

Under the assumption of continuous and second order differentiable, the wave 
potential function <j> in the fluid domain D\ bounded by a closed boundary 
C] can be expressed by 

a^(xo) = £ Wx)^(xo, x) - G(x0, x)|£(x)]<fc (17) 

where G(x0,x) is a free space Green's function and a is a coefficient 
depending on the position of point x0, (a is 2TT when x0 is an interior point 
and equals to the inner angle of the boundary when it is a boundary point); 
x0 is a point in the domain DtnCi and x is a boundary point on C\. 
The free space Green's function for normal incident wave is 

G(x0, x) = In r(x0, x) = In yj(x0 - x)2 + (z0 - z)2 (18) 

Discretizing the boundary Gi into TV segments, the Eq.(17) becomes 

caU^i)=Jll   [ /(x)^r(^''X)-lnr(x0i-,x)^(x)]^        (19) 
j^iJcu r(xoi,x)      dn 

To evaluate the integrals, the curving segments C\j are replaced by 
straightline segments. Each segment is then modeled by a linear element 
which assumes a linear variation of <j> and (j>n over the segment. The line 
integration over each element can be carried out by introducing an auxiliary 
coordinate system (Ligget and Liu, 1983). 

By applying the boundary conditions given in the previous section, Eq.(19) 
yields a set of linear algebraic equations with unknowns of <^>,- and <j>ni (i=l,2, 
... TV). In matrix form, it can be expressed as 

^   A,]{1'} = [B,   *]{£} + ., (20) 

where A,- and B, (i = 1, 2) are the known matrices determined purely by 
boundary geometries, <j>c and <f>nc are the vectors of the unknown potential 
function and its normal derivative on the interface (common) boundary, <j>j 
and 4>nj are the vectors of the unknown potential function and its normal 
derivative along the boundaries other than the interface (common) boundary, 
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b is the known vector containing (j>i resulting from the radiation boundary 
condition on the weather side lateral boundary. 

In the porous domain, a similar expression can be derived by replacing (f> with 
p in Eq.(19). Introducing pn = 0 on impermeable boundaries and carrying 
out the same operations, the resulted matrix equation for p and pn is 

Cn    C12 

C21    C22 I: - Si* 1 »•        <21> 
where pc and pnc are the vectors of pressure function and its normal 
derivative along the common boundary and pt is the pressure vector on the 
impervious bottom of the porous domain. 

Based on Eq.(21) and solving pnc in terms of pc by eliminating pi,, a 
relationship between pnc and pc can be established 

P.c = EPc (22) 

with 
E = (Dn — C12 C22 D21)    (On — C12 C22 C21) (23) 

Substitution of the matching conditions stated in Eq.(15) into Eq.(22) and 
then into Eq.(20) yields 

A> = b (24) 

with 

A = [Ai - Bx    A2 + ~E B2]NxN (25) 
Jo 

and 

.':W- (26) 
This is a determinant equation with complex matrix elements and it can be 
readily solved by a complex equation solver if the linearized coefficient /o for 
the resistances in the porous flow model is given. Unfortunately, it is still an 
unknown at this point and has to be determined by the linearization process. 

Linearization of The Non-linear Percolation Model 

The principle for the linearization is the equivalent energy dissipation by 
both linear and non-linear systems, i.e. 

(ED), = (ED)nl (27) 

For the energy dissipation ED within a control volume (domain) V of porous 
medium during the time period T, the traditional expression (Sollitt et al, 
1972, Madsen, 1974 and Sulisz, 1985) is 

t   ft+T - 
ED= F • pqdt dv (28) 
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where F is the dissipative resistance per unit volume of the porous medium, 
which is a function of the spatial coordinates and the time. 

Since the domain integral in Eq.(28) is very awkward for a boundary element 
model, an equivalent expression in the form of boundary integration has been 
developed (Gu and Wang, 1991, Gu, 1990): 

ED = -^JcP*un,ds (29) 

Where C is the common boundary of the fluid and the porous domains and 
p* is the complex conjugate of p and un is the velocity normal to C, which is 
different for the linearized and for the non-linear systems. The '-' sign is used 
here because ED is considered as a positive value. 

The physical explanation of Eq.(29) is that the energy dissipation inside the 
porous domain in one wave period T is equal to the net energy flux into the 
domain in the same time period. By expressing the energy dissipation in 
such a boundary integral, the advantage of BIEM can be well explored. 

Equating (Eo)i to (-Ex>)n; and taking approximately \q\~\pn/p<rf0\, the 
linearized coefficient f0 can be found to be 

/ PnP* ds 

f° = ~r ^S  (3°) 

Jcfi 
PnP 

• ds 
+ h  I Pn/pvfo 

Equation (30) can be easily solved by iteration. 

Numerical Results 

As an example, two submerged breakwaters are computed with the model. 
One breakwater is made of concrete, therefore impermeable, and the other 
one is made of quarry stones of ds = 0.4 meters. The dimensions and the 
wave conditions are identical for both structures. The crest of the breakwater 
is 12 meters wide with 1.6 meter submergence in a water of 4.6 meters deep. 
The slopes are 1:1.5 on both sides. The wave envelopes and the waves at t=0 
are shown in Fig. 1. Comparing the two wave envelopes, it is obvious that 
the transmitted wave height by the permeable breakwater is less than that 
by the concrete one due to wave energy dissipation inside the breakwater. 
The dissipation is 1.0 — Kj — K\ = 29% of the total wave energy. 

Fig. 2 illustrates the transmission and reflection coefficients for a submerged 
porous breakwater with a scale of 1:20 of the one in Fig. 1. In Fig. 2 the 
coefficients are plotted against the permeability parameter R for four 
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different wave heights, H — 2.0, 4.0, 6.0 and 8.0 cm. The wave period is kept 
constant, at T = 1.2s. The transmission coefficient is shown to have a 
minimum value for each wave height for a particular stone size (around 
R « 1.0, ds « 1.6 cm). A close examination of the resistances showed that 
this minimum transmission or maximum energy dissipation is achieved when 
the dissipative resistance (velocity related) is equal to the non-dissipative 
(acceleration related) resistance. 

It can be observed in the figure that the permeability corresponding to the 
minimum transmission increases with increasing incident wave height, 
whereas the energy dissipation rate remains more or less the same. When the 
permeability (or equivalently the stone size) is greater than a certain value, 
say R = 10.0 (logi? = 1.0), the wave transmission decreases with increasing 
wave height. This means that larger stones are more effective for protection 
against storms. The curves in Fig. 2 also implies that the stone size (or 
permeability) should be large enough so that it will not fall to the left of the 
trough for the design wave height. 

Laboratory Experiment 

The experiment was conducted in the Coastal Engineering Laboratory of 
Coastal and Oceanographic Engineering Department, University of Florida. 
The tank was 25 meters long, 0.6 meters wide and 1.7 meters deep with glass 
walls on both sides. The wave maker is of piston type furnished with an 
absorbing system which was designed to absorb the wave energy reflected 
back to the piston. The tank is also equipped with a motorized rail cart on 
the top to facilitate wave envelope measurements. 

The model of the porous submerged breakwater was of trapezoidal shape 
made of river gravel of d50 = 0.93 cm. It has the same configuration as the 
one shown in Fig. 1 with a scale factor of 1:20. The measurements were 
concentrated on wave reflection and transmission, although the wave 
envelope over the breakwater crest was also measured. 

In the experiment, the measurements of transmission and reflection 
coefficients were carried out for 9 wave periods ranging from T = 0.642 
seconds to T = 1.778 seconds with several different wave heights for each 
wave period. Both non-breaking and breaking waves were tested. Here 
'breaking' refers to white caps over the breakwater crest, not breaking of 
incident waves. 

It was observed in the experiment that higher order harmonics occur on the 
down wave side of the breakwater model, as opposed to monochromatic 
waves predicted by the numerical model. Fig 3 is the energy spectrum of a 
typical transmitted wave record. The data also showed that in general, the 
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wave energy of the first three modes accounts for more than 98% of the total 
transmitted wave energy. 

In order to compare with the numerical results which is based upon the 
energy balance of the fundamental waves, an equivalent height for a 
transmitted wave was defined for the experimental data by summing the 
wave energy of the harmonics i.e. 

(HtU = x £(#«)? « J~E (31) 

where (Ht), is the wave height of the i-tb. order harmonic wave, which can be 
determined by the corresponding spike area of the spectrum diagram and E 
is the total energy per unit area of all the harmonics. 

Figure 4 and 5 are the plots of the transmitted and reflected wave heights 
versus the corresponding incident wave heights. Also plotted are the 
predicted values by the numerical model. The agreement between the data 
and the prediction is reasonably good for transmitted waves before breaking 
occurs. Although the agreement for the reflected waves is not as good, it is 
not difficult to envision a good agreement for the energy dissipation 
{ED = Hf — H? — H?), because of small amplitude for the reflected waves. 
From Fig. 4 and 5, it is clear that the breaking occurs when the incident 
wave height is about H{ = 4.2 cm. After the waves break over the crest, the 
numerical model limited to non-breaking waves apparently over estimates the 
transmitted wave heights. When the incident wave height is over the 
breaking threshold (4.2 cm for this case), the transmitted wave height in the 
experiment changes only slightly, if at all, with the increasing incident wave 
height. The reflected waves are not noticeably affected by the breaking over 
the crest. 

In Fig. 6, the wave envelopes (normalized by the incident wave heights) 
predicted by the model are compared with those of measured in the 
experiment for the case of T = 0.856 seconds; both non-breaking and 
breaking cases are shown. In the non-breaking case, although the measured 
wave envelope above the breakwater crest is shifted slightly upward, the 
numerical model is able to predict, with sufficient accuracy, both the 
variation patterns and the magnitudes of the wave heights (the distances 
between the two envelope profiles). Good agreement was also found for the 
non-breaking portion of the breaking wave cases. The upward shift of the 
mean water level in the data is believed to be caused by set-up over the crest. 



1198 COASTAL ENGINEERING 1992 

Conclusions 

An efficient numerical algorithm using boundary integral method was 
developed to compute the energy dissipation inside submerged rubble-mound 
breakwaters of irregular cross sections. The porous flow model simulating the 
porous breakwaters includes both the velocity induced linear and non-linear 
resistances as well as the acceleration induced inertial resistance. The 
replacement of the domain integral expression for the energy 
dissipation-commonly required by the linearization of the porous flow 
model-by a boundary integral is a key element in achieving the efficient 
numerical algorithm. 

The numerical results show that under a given wave condition the rate of 
energy dissipation in a porous structure has a well defined maximum when 
the dissipative (velocity related) resistance is equal to the non-dissipative 
(acceleration related) resistance. It is shown that porous submerged 
breakwaters, if designed properly, could be more effective than impervious 
ones with same dimensions. It is also shown that large stones (or high 
permeability) is more effective for protection against storms than small 
stones. 

Laboratory experiments were also conducted under both non-breaking and 
breaking wave conditions. The energy dissipation and wave envelope over the 
crest predicted by the model agree well with the experiments for 
non-breaking cases and for the non-breaking portion of the breaking cases. 
For breaking waves, the crest submergence of the breakwater appears to play 
a dominant role in limiting the wave energy transmission. 
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Figure 1. Wave field around Submerged breakwaters: 
(a) Impermeable; (b) Permeable. 
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(a)non-breaking case; (b) breaking case 




