
CHAPTER 81 

The Movement of Submerged Bodies by Breaking Waves 

M.J. Cooker 1    k   D.H. Peregrine 2 

Abstract 

This paper describes a mathematical model of the large but 
short-lived forces exerted on submerged solid bodies by a wave 
impacting on a plane impermeable surface nearby. We consider the 
forces on a hemispherical boulder situated close to a wave impact on 
(i) a vertical wall and (ii) a steep slope. We show that for 
certain positions of the body and for a sufficiently strong wave 
impact the impulsive force on the body can be much greater than 
either the flow drag or the weight of the boulder. For a body which 
is free to move under the wave impulse we compute the body's initial 
velocity. 

Introduction 

This paper describes recent work on the mathematical modelling 
of the large sudden forces exerted on submerged bodies by breaking 
waves. See figure 1. When a wave breaks against a wall the peak 
pressure at a point in the fluid can be ten times greater than 
hydrostatic, and the pressure can rise and fall in milliseconds. 
Richert (1968) measured high pressures on both walls and slopes. 
Nagai (I960) reports measurements in which the maximum peak pressure 
occurs at the bottom of the wall; this may have occurred because the 
bed was exposed before impact. 

Cooker and Peregrine (1990a,1992) have shown theoretically that 
when a wave breaks against a vertical wall the peak fluid pressure 
can be significant all the way down the wall and along the bed. 
Grilli et al (1992) have measured impulsive wave impact pressures 
along the bed in front of a vertical wall. The theory and measure- 
ments show that for a given wave impact the peak pressure decreases 
along the bed with increasing distance from the wall. Suppose a 
small boulder lies on the bed. During the short time of wave impact 
the boulder experiences high pressure on the side near the wall and 
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FIGURE 1: Sketch of a wave impact on a wall with a body on the bed. 

lower pressure on the side away from the wall. This impulsive fluid 
pressure must be treated differently to hydrostatic pressure: in 
order to find the net impulsive load on the body we must carry out 
calculations similar to those for finding added mass. 

In this work it is more convenient to work with the pressure 
impulse  than the peak pressure. The pressure impulse, P(x), at the 

point x due to a wave impact which begins at time tb and ends at 

time ta, is defined to be the time-integral of the pressure p(x,t): 

P(x) p(x,t) dt. (1) 

For an incompressible liquid P satisfies Laplace's Equation (Lamb, 
1932, §11). We expect the highest impact pressures to be generated 
when the fluid contains few air bubbles and so the water may be 
treated as incompressible. P is useful for finding the velocity 
after impact, ua, from the velocity before impact, Ub : 

ua(x) = ub(x) — I VP(x) (2) 

where p   is the water density, and the flows ub can contain 
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vorticity. The peak pressure pPk(x) is connected to the pressure 

impulse by the approximate relation 

ppk(x) = 2P(x)/At   ' (3) 

where the impact duration At = ta — tb must be chosen appropriately. 
The observed decrease in peak pressure with distance along the 

bed in front of a wall which is undergoing wave impact, corresponds 
to a decrease in the pressure impulse along the bed. In general, 
where the water contains a gradient of pressure impulse it can exert 
an impulse on a solid body. We show below that the impulse on the 
body is directly proportional to the product of the volume of the 
body and the size of the pressure impulse gradient. The direction 
of the net impulse can be quite different to the direction of the 
pressure impulse gradient. The size of the impulse on the body also 
depends on its shape, and whether it is fixed or free to move. 

The calculation of the impulsive force on a body has two stages. 
First the pressure impulse Pi is calculated from a boundary-value 
problem (b.v.p.) appropriate to the shape and speed of the impacting 
wave at the instant it meets, for example, a vertical wall. A point 
X is chosen at which we will place a small body and there we find 

the pressure impulse gradient G = VPi. In the second stage we solve 

a second b.v.p. for P2, which is the pressure impulse close to the 
body and which accounts for the disturbance to Pi caused by the 
presence of the body. Finally the net impulse is found from an 
integral of P2 over the surface of the body. If the body is free to 
move we can also find its initial velocity. 

The analysis can be used to find the force on a body in front of 
a vertical wall (see Cooker and Peregrine,1992) or a steep slope. 
The measurements of Richert (1968) show that when a slope is 
subjected to wave impact significant pressure impulse gradients can 
occur. The impulsive forces estimated in this paper can be briefly 
much greater than the forces of flow drag or body weight. This work 
may explain the movement of large blocks seaward  away from steeply 

sloping and vertical sea defences, when these same blocks are un- 
moved by the drag from the water motion of waves. 

2. Pressure Impulse: A comparison with experiment. 

Figure 2(a) is a sketch of a wave impact on a plane vertical 
wall. The peak pressures are greatest when the incident wave crest 
is parallel to the wall at the instant of impact, so the flow may be 
modelled in a two-dimensional plane perpendicular to the shore. The 
idealized boundary-value problem (b.v.p.) for the pressure impulse, 
P, is shown in figure 2(b). The total height of water is H and for 
simplicity we suppose the wave face impacts the wall between y = 0 
and y = -//H, where fi must be chosen between 0 and 1. The component 
of water velocity normal to the wall before impact is supposed the 
same at all points and denoted U0. The bed and wall are impermeable. 
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FIGURE 2(a): Sketch of the wave before impact on a vertical wall. 
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FIGURE 2(b): Boundary-value problem for pressure impulse P±. 
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FIGURE 3(a): Comparisons of measured pressure impulse with theory, 
for impact as in figure 2. /t = •$• , U0 = lm/s H = 0.1m . 
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FIGURE 3(b): As fig. 3(a). fi = f, U0 = lm/s, H = 0.1m. The disagree- 

ment may be due to the impact being more prolonged and less intense 
than in fig. 3(a): peak pressures are only 7- of those in fig. 3(a). 
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The b.v.p is solved by Cooker and Peregrine (1990a) and we 
compare this earlier result with the measurements of Hattori (1992). 
The values of fi, H, U0 are estimated from high-speed video images: 
\i =0.53, H =0.1m, and U0 = lm/s. Figure 3 shows two comparisons 
between the theory (with parameters chosen from the video) and the 
pressure measurements of Hattori. The close agreement of figure 
3(a) occurs for a wave impact of short duration with a very high 
maximum peak pressure of 525gf/cm2. The disagreement in figure 3(b) 
is interesting because it shows the pressure impulse with a maximum 
near the bed, indicating that P (and its gradient) may be signifi- 
cant along the bed. Also this second comparison corresponds to a 
low impact pressure maximum measured to be 70gf/cm2, so pressure 
impulse theory may be inappropriate for this less sudden impact. 
Further note that the values of pressure impulse in figure 3(a) and 
figure 3(b) are similar even though the maximum peak peak pressures 
differ by a factor of 7. This accords with the repeated wave 
experiments of Bagnold (1939) who observed the constancy of pressure 
impulse compared with the very wide variation of the peak pressures. 

3. The Impulse on a Hemispherical Boulder: Vertical Wall. 

Figure 4 shows the distribution of pressure impulse on the wall 
and along the bed for the solution Pi of the b.v.p. presented in 
figure 2(b). On the bed, the gradient of Pt, denoted G,is directed 

along the bed.  |G| takes its greatest value of O.ll^Uo at x = xm = 

0.48H, where x = 0 is at the wall. We now place a boulder in the 
shape of a hemisphere on the bed at x = xm, so that it can 
experience the greatest gradient of pressure impulse. Locally we 
can model the variation of Pi by a linear approximation: 

Pt = P0 - G(x - xm) (4) 

where P0 and G are the positive constants P0 = Pi (x=xm,y=-H) and 

G = \-n- (x=xm,y=-H) |.  We now compute the effect on Pi due to the 

presence of the boulder. P2 is the pressure impulse on and near the 
boulder. Let r,9,j> be spherical polar coordinates centred on the 
hemisphere, where 0 is the angle subtended by the field point and 
the x-axis, at the centre of the hemisphere. P2 is harmonic and 
must match the variation of Pi, given by equation (4) (expressed in 
polar coordinates), at large distance from the boulder: i.e. 

P2(x) —> Pt(x) = P0 - G r cos 6   as Ixl = r —> oo.  (5) 

On the boulder, r = a, we have the second boundary condition for P2: 

d?2 =   -p\  cos 6 (6) 
W 

where V is the as yet unknown velocity component along the x-axis 
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FIGURE 4(a):    The variation of 

pressure impulse up the wall for 

the wave impact illustrated in 

figure 2. \i = £. 
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FIGURE 4(b): As figure 4(a). The pressure impulse on the bed for 
several values of /i. At points where d?/<h is large the fluid can 
exert an impulsive load on a body. 
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acquired by the body due to the fluid impulse. Cooker and Peregrine 
(1992) show that the impulse on the hemisphere is 

I = its3  ff 3G - p\ }  . (7) 

For a free boulder we may equate the impulse I with momentum gained 
by the body: if pb is the boulder's uniform density then the initial 
speed of unconstrained motion is 

u _   3G ^ 

2/9b + p 

If the body is fixed then V = 0 in equation (7).  If the body is 
free then equations (7) and (8) give 

I = -Jxa3 I  3G^b  } . (9) 
2/9b + p 

Equation (3) suggests that the peak force is related to the impulse: 

F = 2I/At. (10) 

EXAMPLE.  Let H = 2m , U0 = V(gH) = 4.4m/s, and p  =   1035kg/m3, 
ph  = 2.7/9. For impact on a vertical wall, with fi = i ,  the position 
of maximum pressure impulse gradient is xm = 0.48H = 1.2m from the 
wall. G =0.1pVo  =0.44/9 =460 Ns/m. Let the impact time At =0.01s. 

From equation (8)     V = 0.21 m/s and is the same for any 
hemisphere radius a. 

From equation (9)     I = 1.21 a3 kNs. 
From equation (10)    F = 240 a3 kN. 
We estimate the flow drag, D, from that for a sphere for 

Reynold's numbers between 104 and 106 with a drag coefficient Cd = i 

and a typical flow speed of U0 (Batchelor, 1973, p341). 

D = fCd(^a
2)A2 (11) 

D = 7.9 a2 kN. 

Finally the dry weight V = fra3 /?bg (12) 

Hence W = 57 a3 kN. 

The following table compares the forces for several hemispheres 
of different radius, a, all much less than the local depth H. 

a (m)      F (N)      D (N)      V (N) 

0.05 30 19.7 7.2 
0.1 240 79 57 
0.2 1930 320 460 
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The impulsive force F is directed away from the wall and the drag D 
is directed toward the wall, at the instant of impact. In each case 
the impulsive force F is much greater than either the drag, D, or 
the dry weight, W. Also D is directly proportional to the cross- 
sectional area of the body, whereas F is directly proportional to 
its volume. So for larger bodies we expect the impulsive force to 
be even more important than the other forces acting. If the body is 
fixed then the impulsive force F is 197. greater than that tabulated. 

4. The Impulse on a Hemispherical Boulder: Steep Slope. 

The effect of water impact is directly dependent on the inertia 
of the water, and during the short time of high impact pressures, 
gravity has no significant effect and so pressure impulse theory can 
be used for waves breaking directly onto a slope. For example figure 
5 shows the distribution of P in a quarter-plane, adapted for a 
slope by simply turning it. We can choose any line P=constant as a 
free surface (P = 0), by subtracting the constant from the solution. 

It is inadvisable to rely on pressure impulse theory near the 
impact region since the motion there is grossly simplified. Much 
energy is given to the small amount of water in the splash (see for 
example the jet flow computed in Cooker and Peregrine, 1990b). 
However, down the slope, the pressure impulse gradients are more 
reliably estimated. Proximity to the impact region leads to 
pressure impulse gradients which are much bigger than those on the 
bed in front of a wall. 

In figure 5 the breaking wave face is modelled to strike the 
slope like a closing door which is hinged at y = -d, and has maximum 
speed U0 at y = 0. Figure 6 shows the variation on the slope of P 
and its derivative parallel to the slope. We place a hemisphere at 
y = -2d = -2m (d =lm), and we estimate U0 = V(dg) =3.13m/s. At the 
hemisphere position G = 0.065pUo. The impact time At = 0.01s. 
From equations (9,10,11,12) 

The impulsive force is F = 111 a3 kN. 
The flow drag force is D = 4.0 a2 kN. 
The weight of the body is  W = 57 a3 kN. 

The following table compares the forces for several radii, a. 

a (m)      F (N)     D (N)     W (N) 

0.05 13.9 10 7.2 
0.1 111 40 57 
0.2 890 159 460 

The impulsive force F is directed down the slope and the drag is 
directed up the slope. As a increases F becomes ever larger than 
the drag. The initial speed of each of the hemispheres is 0.09 m/s. 
The main difference between the two calculations of impulsive force 
on a body (in front of a wall and on a slope) is the value of G. 
Both F and V are directly proportional to G. 
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FIGURE 5: Contours of pressure impulse P for wave impact on a slope. 
A solution in a quarter-plane has been rotated to lie on the slope. 
By subtracting a constant from the solution a curved free surface 
can be obtained, (e.g. the bold contour shown). The impacting wave 
face is modelled as a closing door, hinged at y/d = -1, with speed 
U0 = 1 at y = 0. The contour increment is 0.005 p\J0d, with a maximum 
of 0.240 pUod on the slope at y/d = -0.4 . 
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FIGURE 6: As figure 5. The distribution of P and its gradient on 
the slope. Note that G = d?/dy acts to thrust bodies down the slope 
below the impact zone (which lies between y/d = 0 and y/d = -1. 

5. Conclusions 

The hemisphere is an idealized boulder. Cooker and Peregrine 
(1992) discuss the impulsive force on a hemi-ellipsoid and they show 
that a body broadside on to an impact region receives a much larger 
impulse than a body pointing toward the impact region. 

A hemisphere which is free to move may be expected to have a 
fluid layer between its base and the bed. If the layer has a narrow 
width h(x,y) then the pressure impulse obeys a certain partial diff- 
erential equation: V.(hVP)=0. The distribution of pressure impulse 
in the layer may cause a net upthrust on the boulder. For the hemi- 
sphere, if the gap width is constant, it can be shown that the up- 
thrust is equal and opposite to the downthrust on the upper curved 
surface. So in this special case there is zero net impulse normal 
to the bed (and hence no impulsive reaction between the boulder and 
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the bed due to friction). Nevertheless the pressure impulse distri- 
bution on the base of the hemisphere causes an impulsive overturning 
moment. In general the impulsive uplift and overturning moment 
depend in a complicated way on h(x,y) and the shape of the boulder, 
and is the subject of future study. 

This work suggests that the impulsive pressure field created 
inside a wave when it impacts a solid surface may be large enough to 
move nearby bodies, such as armour units, and may explain some of 
the damage to the Sines breakwater which had a wall at its crest 
(see Baird et al, 1980). For a wave impact which is sufficiently 
high-speed and short-lived the impulsive loads on a hemisphere can 
be much greater than the flow drag or the weight of the body. 
Further, the impulse increases with the volume of the body, whereas 
the drag increases with its cross-sectional area. So we expect 
impulsive loading to be most important for the biggest boulders. 
The impulse is greater for a fixed body than one free to move (19% 
greater for a hemisphere). 

The theory must be modified for a body which is so large that it 
alters the incident wave flow. Here a b.v.p in a domain containing 
both the wave and the boulder must be solved with modified boundary 
conditions. Despite the increased complexity we still expect the 
impulsive forces to be significant compared with the other types of 
load. 

The solution for a body on a slope shows that a boulder can be 
thrust seawards down the beach if it is below the impact zone. 
Inside the impact zone the predicted pressure impulse gradients 
suggest they would force a body up the slope, but here we can be 
less certain of the applicability of pressure impulse theory. 
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