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ABSTRACT 
A mathematical model is presented which describes cross-shore low-frequency 

motions generated by shoaling and breaking of wave-groups on a beach. The 
numerical scheme is tested against known analytical solutions for standing waves 
on a plane beach. Model results are compared with laboratory experiments 
(Kostense, 1984) which refer to bichromatic carrier waves incident on a plane 
beach. It is shown that, apart from a good representation of the trends found in 
the experimental study, for realistic values of the breaking and friction coeffi- 
cients the computational results also quantitatively agree surprisingly well with the 
experiments. 

INTRODUCTION 
Low-frequency motions on the time-scale of wave groups can have significant 

effects on cross-shore morphology, both in the inner nearshore region, where 
sometimes they even dominate over motions at wind-wave frequencies, and else- 
where in the nearshore region, through their interaction with the wave groups. 
Their effect on cross-shore morphology has been shown to be of the same order 
of magnitude as other mechanisms, such as return flow and wave asymmetry 
(Roelvink and Stive, 1989). 

Several aspects of long-wave generation inside and outside the surf zone have 
been addressed in literature (e.g. Longuet-Higgins and Stewart, 1962; Symonds et 
al, 1982; Abdelrahman and Thornton, 1987; Schaeffer and Jonsson, 1990; List, 
1992). The models presented in these references are strongly schematized in 
either the hydrodynamic equations or the bottom geometry and are not meant to 
be predictive models for arbitrary waves on an arbitrary profile. Some first 
attempts towards this were presented in Roelvink (1991), Symonds and Black 
(1991) and Sato (1991). 

The purpose of the model presented here is to predict the cross-shore structure 
of the incident wave groups, the long waves generated inside and outside the 
surfzone, and their combined effect on sediment transport, for random waves 
incident perpendicular to a uniform beach of arbitrary profile. The model is 
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time-dependent on the time-scale of wave groups; the basic formulations have 
been described in Roelvink (1991). 

In the paper we will discuss the model formulations; the numerical scheme will 
be outlined and tested against analytical solutions of parts of the problem. The 
model is then compared with experiments with bichromatic waves on a plane 
beach and the sensitivity of the model for the dissipation coefficients is investi- 
gated. 

MODEL FORMULATIONS 
The model solves simultaneously a set of three short-wave averaged balance 

equations, viz. for momentum, continuity and wave energy. Closure relations 
which relate i.e. radiation stress to wave energy are derived from linear theory. 
Wave breaking is incorporated by means of an empirical formulation, which 
relates the dissipation rate to the local wave energy and the water depth. 

The balance equations are: the momentum equation for the long waves, 

dt    '     dx h p       2 

the continuity equation for the long waves 

gh> gh dd 
dx 

+   T, 

9    h d e, = o 
dt dx 

and the wave action equation, reduced to a wave energy balance equation: 

dt 
±EC 
dx      s -D 

(1) 

(2) 

(3) 

Here, h is the water depth, Qi 

flux, S^ is the radiation stress, 
acceleration of gravity,    d    is the still water depth, 

is the total flux,    Qw   is the wave-induced 
p    is the density of the water,    g   is the 

T.     is the bottom shear 
stress,    E   is the short wave energy and 
waves. 

C    is the group velocity of the short 

Additional equations are required to close the system of equations; very common 
ones are used here: 

(4) 
1 
of   ' Q' ' 0, 

h 

where  fw   is a friction coefficient; 

s„ = C       2 
E 

Q  = - 
oC 

(5) 

(6) 
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c = 

C  = — = A- ( tanh(#i) + kh [1 - tanh2(/yO] ) g      dk       2co 

(7) 

(8) 

Here,   «   is a representative angular frequency of the short waves and   k   is a 
representative wave number. 

The short wave energy dissipation is modelled according to Roelvink (1992) as: 

D = 2a fE 

• 

1 - exp - J%Elpg 
yh 

n 

(9) 

where f is a representative short wave frequency and a , y and n are 
coefficients, with optimum values for random waves of 1.0, 0.55 and 10, 
respectively. 

With the help of these additional equations, equations (1) through (3) are solved 
simultaneously for a given profile and boundary conditions for   E ,    Qt   and 

h   at the seaward boundary. 

NUMERICAL SCHEME 
The differential equations are solved by a finite difference, second-order Richt- 

meyer scheme on a nonequidistant moving grid of which the landward boundary 
moves up and down with the waterline. This is achieved by applying a transform- 
ation to the equations as described below. 

The set of equations we want to transform can in Cartesian coordinates be 
described as: 

^+M^=0(v)^+9(v) 
dt      dx dx 

(10) 

where the functions / and q need not be linear in their arguments. 
We now use a transformation to general time dependent coordinates of the 
following form: 

T = t (11) 

W(£)d? 

Xfi) 
(12) 

Wtf^f 
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This transformation transforms the interval in the x-domain: [0,Xr(t)] which 
depends on the time coordinate t, to the fixed interval [0,1] in the £ domain. 
The transformation to the   r domain is trivial. 
In order that the inverse transformation functions x(r,if) and t(r) exist the 
function W has to be chosen such that it does not change sign in the interval 
[0,Xr(0L 
The function Xr(f) is the solution of an ordinary differential equation: 

d^ = S(v(t,Xr(t)) = u(t,Xr(t)) (13) 

In the new coordinate system the set of differential equations becomes: 

^(ri(T,«%,{)) + A(7-2(T,f) V(T,0 +MT,i)))=T1(T,iMKT,l:))Px(T,i) + tff>(r,$))) 

(14) 

"IP- -fl(r,l) (15) 
dr 

where,      f 

j,     T(rn   twm) dxr(r) 
W(X(T,?)) '        'K7,V       W{x{r,Z))     dr 

%,*)=v(7VC(T,f)) and ^(r,|)=^(x(r,|)). 

In the appendix a derivation of equation (14) is given. 
Equation (14) can be written as: 

w+mv^=RiV,T^ (16) 
or at; 

so it has exactly the same structure as Eq.(10). 
The discretization used to solve the set of differential equations (14) in the 
(r,?) domain is done on an equidistant grid: 

f,=lfor/=0(lW. 

The time steps are constant as well: r} =jAr and therefore t} =JAT . 
In the physical domain (r,*)this introduces a non-equidistant grid with grid points 
x- which satisfy the equation: 

irl 
W({)d? 

—     for/=0(l)iV (17) 
N       X(r.) 
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The weight function W can be chosen in such a way that near to regions where 
the physics becomes more interesting a grid refinement can be realized. 
The scheme we use is Richtmeyer's predictor corrector scheme; the discretization 
of Eq.(16) now becomes: 

Predictor: 

V^iiVt^Vb-^iFU-Fb + ^iRU+R',) (18) 

where F^=F(V^,Ty,{ftl)   , */•,=*( W+„T,,$,+1) , 

xr1/2=X/ + ^(34iJ(T,,l)-14«(r,_1,l)+4M(r._2,l)) (19) 

•*i+l/2 

f W(fl# 
4lm is solved from |,+1/2 = L^L = ± for /=0(1)AM. 

Corrector: 
VHSM 

x?-1 is solved from: £,.=- 

VT = V\- ±L (FJ^-F^ + ^ (RKZ+R'M) (20) 

^tl=^^(23«(7,)l)-16M(v1,l)+5i/(r._2,l)) (21) 

W(f)rff 

y,     ,for z=0(l)AT. 
AT    x'," 

f w(r)^r 
The schemes that are used to solve Eq.(15) are (19) and (21), these are both third 
order Adams-Bashforth methods. 
The linear stability condition for the Richtmeyer scheme is 

•L*l (22) 
A? 

where X is the largest eigenvalue of dF/dV in absolute sense. 
The largest eigenvalue of df/dv in equation (10) can be approximated by u +JgfT. 
Since 7", and T2 are both scalar functions, the largest eigenvalue in the trans- 

formed problem (14) becomes: 

x= 
T2 ,, u+\jgh 
T T 1l -M 
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Stability condition (22) can now be written as: 
Xr(r) 

W(X{T&)fl(T,$) -f W(Xr(r)) ^ + W(x(r,?)) \W,S)   < ^ f W)* (23) 
dr AT I, 

The condition we use to replace Eq.(23) is: 
  Jf,M 

wwr,?))v^(Mo,?)+e) <|i[wa)rfr (24) 

here ft(0,£) is the still water depth and e is a small positive number. 
A convenient weight function now becomes: 

W(x) - l 

V*(ft(0,*)+e) 
With this choice the CFL stability condition (23) can now be replaced by: 

Ar<A|f  - dx (25) 

By replacing X.(T) in Eq.(25) by a lower boundary of XJj) we found a constant 
value for AT . 

The scheme is compared with analytical solutions of standing long waves on a 
plane beach as given by Carrier and Greenspan (1957); an example is given in 
Figure 1. Very small deviations occur at the shoreline, which disappear with 
increasing number of grid points. 

MODEL RESULTS AND SENSITIVITY ANALYSIS 
Model results are compared with laboratory experiments by Kostense (1984), 

which refer to wave channel tests of bichromatic waves on a plane beach. The 
experiments were carried out with active wave absorption and second order wave 
generation, enabling undisturbed, stable and accurate measurements. They cover a 
range of primary frequencies, group frequencies, amplitudes and modulation rates 
and are therefore well suited to verify the predictive ability of the model. The 
primary waves in these tests were made up of two frequencies generated in a 
water depth of 0.50 m and broke on a plane cemented beach of a 1:20 slope after 
travelling over a horizontal stretch. In Table 1 below, the ranges of frequency and 
amplitude of the primary waves are given. In series A, B and E, the effect of 
varying the difference frequency is studied for fixed primary wave amplitudes; in 
series C and D the effect of varying the primary wave amplitude is shown for a 
fixed difference frequency. Series A through D were carried out with weakly 
modulated waves; series E with strongly modulated primary waves. 

For a given set of primary waves, the input boundary conditions for the numeri- 
cal model are defined by: 

PS -(rfi + r)l) + i)^2cos(Aco t) (26) 
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Figure 1. Comparison of numerical (thin lines) and analytical (thick lines) 
solution of standing long wave on a plane sloping beach; 
dimensionless elevation (top) and velocity (bottom). 

Series 

(m) 
Vi 

(m) (rad/s) 

Aco 

(rad/s) 

A 0.055 0.2 3.1 0.3-0.9 

B 0.055 0.2 4.1 0.3-0.9 

C 0.035-0.080 0.2 4.1 0.77 

D 0.030-0.055 0.2 3.1 0.61 

E 0.035 0.8 4.3 0.3-0.9 
Table 1. Ranges of primary wave parameters in Kostense experiment. 

The accompanying bound long wave, which is also generated in the experiment, 
is given by Longuet-Higgins and Stewart (1964): 

h-Ti (2-^-0.5) / (gh - C2
g) iy17;2cos(Aw t) (27) 
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a..s (2^-0.5)/(gh - Cl) ij,ij2cos(Aw t) (28) 

In order to prevent re-reflection of long waves at the seaward boundary, a weakly 
reflective boundary condition is used as described in Roelvink (1991). 

The procedure to hindcast these the experiments is as follows. For a given set of 
primary waves, the model is run until a periodic solution is reached. The surface 
elevation time series are then split into three components, viz. the incoming 
bound wave, the reflected free wave and an incoming free wave. Incoming free 
waves are negligible since they are not generated and since the weakly reflective 
boundary condition allows waves reflected from the beach to propagate out of the 
model. The amplitudes of the incoming bound wave and the reflected free wave 
are determined by harmonic analysis. Per series A through E, approximately 
twenty such runs are carried out to cover the range of the free parameter for each 
series. 

The numerical model contains empirical coefficients in the description of the 
dissipation of short waves by wave breaking, and of the dissipation of long waves 
by bottom friction. For random waves, a standard set of values for the wave 
breaking coefficients can be applied, as is shown in Roelvink (1992). A key 
factor here is the coefficient y, which is proportional to the average breaking 
wave height over water depth ratio, and is set at 0.55 for random waves. For 
bichromatic waves, this ratio should be significantly higher; a reasonable estimate 
appears to be 0.75. Because of the uncertainty in this value, computations are 
performed for y-values of 0.55, 0.75 and 0.90. 

Since there is no accurate description of the bottom friction under combined short 
and long waves, the simplest possible formulation as in eq. (4) is applied. 
Computations are performed for three values of fw: 0.00, 0.02 and 0.05. The 
variations in fw are applied for a fixed 7-value of 0.75; the variations in yfor a 
fixed /w-value of 0.02. 

The results for series A through E are shown in Figures 2 through 6, respective- 
ly. In all cases, the bound long wave amplitude is predicted accurately; it does 
not depend on either of the coefficients. The increase in the bound wave ampli- 
tude for increasing difference frequency is due to the slight decrease in the mean 
of the primary frequencies. As expected, the bound wave amplitude increases 
quadratically with increasing primary wave amplitude. 

The amplitudes of the reflected free waves show interesting interference patterns 
which are represented quite well by the model. Schaffer and Jonsson (1990) 
already concluded based on a comparison between their model and these data, 
that frictional effects must be important. Especially for the higher group fre- 
quencies this appears to be the case. A reasonable value for the friction factor of 
0.02 appears to give acceptable quantitative agreement for all series. 
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Figure 2.       Measured and computed amplitudes of free reflected and bound 
long wave elevation against difference frequency Aa>; series A. 
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Figure 3.       Measured and computed amplitudes of free reflected and bound 
long wave elevation against difference frequency Aw; series B. 
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Figure 4.       Measured and computed amplitudes of free reflected and bound 
long wave elevation against primary wave amplitude f)l; series C. 

X Measured X Measured 
 Comp.   fw = 0.00 Comp.   gamma=.55 
 Comp.   fw = 0.02  Comp.   gamma=.75 D series 
  Comp.   fw = 0.05  Comp.   gamma=.90 

9 

8 

7 

5 

_  5 
E 
3 A 

D   3 
o 

s-2 

i 

0, 

1 

1/ X 

// 
/  . 

A •yy< 

6 
/ 

x* 

8      10 

// 
X 

4 ''/ 
/' f« 
// 
' x* 

9 

8 

\'. 

I5 

•O   4 
c 
D 
o  3 
o 

*Z 

1 

0 

: 

JJ 1   (cm) JJ 1   (cm) JJ 1   (cm) 

Figure 5. Measured and computed amplitudes of free reflected and bound 
long wave elevation against primary wave amplitude )),; series D. 
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Figure 6.       Measured and computed amplitudes of free reflected and bound 
long wave elevation against difference frequency Aw; series E. 

The model results are not extremely sensitive to variations in the breaker parame- 
ter y. A reasonable value of 0.75 for these bichromatic waves gives acceptable 
results for all series. 

The prediction of the reflected free wave amplitude for highly modulated waves 
in series E is quite accurate; no previous model results on this case have been 
presented in literature. 

A disadvantage of this numerical model is, that it is not possible to separate 
different mechanisms of long wave generation, viz. the reflection of bound long 
waves, the break point mechanism or the shoreline set-up mechanism. Probably 
all of these mechanisms are important at times; the results indicate that no serious 
errors in the representation of any mechanism have been made. 

CONCLUSION 
The numerical model SURFBEAT appears to contain the necessary physics to 
predict long wave generation in the nearshore zone. Since it can be run with 
arbitrary boundary conditions over an arbitrary profile, it can be used to model 
realistic situations where cross-shore processes are dominant. 
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APPENDIX 

The transformation equations (11) and (12) are of the form: 

T=t (Al) 

*=?(V) (A2) 

We can directly see that 

£-1 
dt 

i!r=o 
dx 

The property  —Zl-—ll=li^0 implies that x(r,|) and t(r,ksi)( = T) exist. 

Obviously the inverse transformation has the property: 

Tr 

Since _ =0 we find: 

l=^i=^^+M^=^i^ resulting in: 
a? dx a?  a? a? ax ai 

TNST)"1 (A3) 
ax   a? 

dr Since —=1 and x and ? are independent we have: 

n   dx   dx a?   dx dr   dx 3|   3x        ... 0=—= - + = -+—, resulting in: 
dt a? dt dr dt as dt a? 

d^=_dx(dxyl ,A4) 

dt      drdt 

The differential equation: 

dt   dx 

which is one of the components of Eq.(l) to (3), can now directly be written as: 

a^ai^ar^ai^ar^ 
a? dt   dr dt   3| 3x   dr dx 

where V(T,0=V(TXT,0) and f=AKr,0)- 
With the use of Eqs.(Al),(A2),(A3) and (A4) this becomes: 
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dr as   a£ dr   a?   a? 

Multiplication with — yields: 

_dx dv +dx dv + df _ dx~ 
97'aT+'aT'a7+'al a?' 

which can be written as: 

A(^t))+A(-^D+f)=^£r (A5) 
drdi. ' ar 9T- 

J> a? 
With the use of the expressions: 

a«_. dKr W{Xr{t))—L 

(f Mr)*)2 

a? _   ww 
dX  *» 

and the relations (A3) and (A4), equation (14) emerges from (A5) 




