
CHAPTER 71 

Statistics of wave group parameters 

Gerbrant Ph. van Vledder 1 

Abstract 

The statistical properties of four spectral shape parameters {Qp, Qe, K and v) and the 
correlation coefficient between succeeding wave heights (pHH) are investigated using field 
data and numerically simulated data. The effects of spectral smoothing, integration range and 
duration of the data record on estimates of these parameters are discussed. The relation 
between spectral shape and wave grouping is discussed in relation to Kimura's theory for 
group length statistics. A group length distribution independent method for computing this 
mean group length is introduced. Further, a comparison is made between time and frequency 
domain estimates of the correlation coefficient between successive wave heights. Observed 
discrepancies between them are analyzed and an improved method for the spectral 
computation of this coefficient is suggested. 

1        Introduction 

The statistical analysis of random wave groups has received much attention in the last years. 
These studies can be divided into analyses in terms of individual wave heights or in terms 
of wave envelopes. This paper concentrates on wave group analysis in terms of individual 
waves, where a wave group is defined as a sequence of waves all succeed a certain height. 
The most successful model for the statistical description of group lengths has been given by 
Kimura (1980). Principal parameter in this model is the correlation between successive wave 
heights. Various parameters have been developed to relate wave group length statistics to the 
spectral shape, e.g. the well known peakedness parameter Q    introduced by Goda 
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(1970), or the K parameter, used by Battjes and Van Vledder (1984). This K parameter 
links the spectral width via the correlation coefficient pHH between successive wave heights 
to group length statistics. Other measures for the spectral width are the parameter v, 
introduced by Longuet-Higgins (1975), or Qe, introduced by Medina and Hudspeth (1987). 

Most of these parameters lack a theoretical basis linking wave group statistics and spectral 
width. Only the K parameter has such a basis, although it underestimates group lengths. 
Medina and Hudspeth (1990) have theoretically analyzed the relation between the spectral 
shape parameters Q , Qe, K and the correlation coefficient between successive wave 
heights pm. They used a three-axes representation to show that these parameters are 
interrelated. They argue, that because of this interrelationship, only one of these parameters 
is required in order to evaluate wave groupiness. Although they note the possible effect of 
statistical variability on the estimates of these parameters, they do not pursue the 
consequences of this variability on the interrelationship between these parameters. 

The purpose of this paper is to analyze the statistical properties of four spectral shape 
parameters (Q , Qe, v and K) and their usefulness in relation to wave grouping. Also, the 
effects of spectral smoothing, sensitivity to integration range and duration of the underlying 
wave record on estimates of these parameters are investigated. Finally, assumptions in the 
spectral computation of this coefficient are reviewed and improved where possible. 

2       Wave group analysis in terms of individual waves 

In this paper wave groups are defined in terms of individual zero-up crossing waves. A wave 
group is defined as a sequence of succeeding waves with heights that all exceed a preset 
threshold level (e.g. the mean wave height). The length of the wave group is equal to the 
number of waves in a group. The mean group length in a wave record is considered as the 
measure for the amount of wave grouping. 

Models for the probability distribution of group lengths have been given by Goda (1970) and 
Kimura (1980). The model of Goda underestimates group lengths since it neglects the 
correlation between succeeding wave heights. As was shown by Rye (1974) and others, 
consecutive wave heights are positively correlated. This correlation is quantified by means 
of the coefficient of linear correlation: 

PHH,, = -\-^-''t1(Hl-Hm)(HM-Hm) (2.1) 

in which aH is the standard deviation and Hm the mean wave height and JV the number of 
waves in a record. The subscript t refers to time domain. 
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These correlations are considered in the model of Kimura (1980), in which it is assumed that 
succeeding wave heights form a Markov-chain. To compute the probability of a sequence 
of high waves with a certain length, Kimura used the conditional probability p22 that a wave 
height exceeds the threshold level, H   given that the previous wave also exceeds H • 

/>22 = P»b{^1>Jffe|^>Jffe} 

The group length distribution function is: 

/>,(;) = (1 -p22)pi2
l 

The mean group length can be computed as: 

7, = E{;} = ijP.U) = T
J— 

and the standard deviation of group length can be computed as: 

o10-)={E{72}-E{y}2}1/2--^- 

(2.2) 

(2.3) 

(2.4) 

(2.5) 
1~P22 

The probability p22 is computed from the joint probability density function p(HltH2) of 
succeeding wave heights: 

p22 = / fpiH^HJdH^   I [ fpiH^HJdH^Ht (2.6) 

where p{Hl, H2) is the bi-variate Rayleigh distribution: 

p(HltH2) = ^-    .l   2„exp 
4   ^(1-K2) 

71      Hi +H2 
4 H2

m(l-J)) 
K HlH2^ 

MI-K
2
)   Hi 

(2.7) 

In Eq. (2.7) K is a correlation parameter, Hm the mean wave height, and I0 the modified 
Bessel function of zeroth order. The relation between the correlation parameter K and the 
coefficient of linear correlation is given by: 

PHH 

£<K)--i(l-K»)*(K)-1t/4 
(2.8) 

1 -TC/4 

in which K and E are the complete elliptic integrals of the first and second kind, 
respectively. An accurate approximation of Eq. (2.8) has been given by Battjes (1974): 

PHH 
a 

TC 

16-4TC 

2       K4       K6 

*r + 
16    64) 

(2.9) 
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The truncation error involved in approximation (2.9) is less than 0.1 % for 0 £ K < 0.7 and 
less than 1 % for 0.7 <; K < 0.95. 

The model of Kimura has been verified against field measurements by Goda (1983), Battjes 
and Van Vledder (1984), and others. The present study also supports Kimura's model for 
predicting the mean group length. To that end, numerically simulated data have been used, 
see section 7, Fig. 1, panel a). 

3       The mean group length 

The standard method of deriving the mean group length j\ is via Eq. (2.4) on the basis of 
the theoretical group length distribution (2.3). The mean group length, however, is 
independent of this group length distribution (Van Vledder, 1983). 

Consider a wave record with Nw waves of which Nh waves are higher than the threshold 
level Hj,. Further, the wave record contains N groups of high waves. The mean group 
length /j can then be computed as: 

-       N. 
A • - 

The end of each wave group can be identified as a sequence of a high wave followed by a 
low wave. Consequently, the number of wave groups is given by: 

Ng=Nwx Prob{Ht > Hc A HM s He} (3.2) 

The number of high waves in the wave record is given by 

Nh =NwxVtob{Ht>Hc} (3.3) 

Thus, the mean group length jl can be computed as: 

Prob{ff.>Zfc} 

(3.4) 
V«*>{Ht>HeMlM*He} 

=  1  

1 -Prob{ff,.tl>ffc \Hi>Hc] 

which by virtue of Eq. (2.2) is equal to expression (2.4). This result implies that the mean 
group length jt is directly related to the correlation coefficient between successive wave 
heights pHHt, through the Eqs. (2.6), (2.7) and (2.8). It also implies that the mean group 
length does not depend on correlations between non-successive wave heights. 
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Spectral shape parameters 

It is well known that the spectral width is related to the amount of wave grouping. Sea states 
with narrow spectra show a higher amount of wave grouping than those with broad spectra 
(Rye, 1974, and others). Below, four spectral width parameters (Q , Qe, v and K) are 
described that have been suggested in relation to wave grouping. The Q parameter has been 
introduced by Goda (1970) as a measure for the peakedness of the wave spectrum. It is 
defined as: 

mn o 
ffS(f)2df (4.1) 

in which S(f) the frequency spectrum and m0 its zeroth moment. The Qp parameter is 
frequently used by many authors in relation to the amount of wave grouping of wind waves. 
Recently, Medina and Hudspeth (1987) proposed the spectral peakedness parameter Qe, 
similar to Goda's peakedness parameter, it is defined as: 

2m,  e . 
Qe = —j- } S(f)2df (4.2) 

with m0 and m1 the zeroth and first spectral moment of S(f), respectively. Another 
spectral width parameter was introduced by Longuet-Higgins (1975), 

v = (mQm2/m
2-l)2 (4.3) 

and applied by Longuet-Higgins (1984) and Chandler and Masson (1992) to wave group 
statistics. 

Above three parameters have been proposed on intuitive grounds rather than on theoretical 
ones. A fundamental approach to relate the spectral shape with the amount of wave grouping 
is based on Rice's (1944) theoretical results on envelope statistics. Rice (1944) has derived 
the joint probability of two values R1 and R2 of the wave envelope R( t) for a narrow- 
banded Gaussian process, separated by a time lag x. This distribution is the bi-variate 
Rayleigh distribution, given by Eq. (2.7), but with the parameters Hx, H2 and Hm replaced 
by .Rj, #2 and Rm, respectively. This bi-variate Rayleigh distribution contains a correlation 
parameter that depends on the lag t and the spectral shape. The definition for this parameter 
has been rewritten by Battjes (1974) as: 

K2(-c)mo fS(f)cos(2nfx)df fS(f)sin(2nfx)df (4.4) 

For narrow spectra, Rice's result can be used to derive the joint distribution of two 
consecutive wave heights H1 and H2 by substituting H1 =2RX and H2=2R2, and using 
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T = Tm, where T   is the mean wave period that can be computed from the wave spectrum 
(Arhan and Ezraty, 1978): 

T
m = Tm02 = fana;. (4.5) 

Using relation (2.8) a frequency domain estimate of the correlation coefficient between 
successive wave heights can be obtained. Such an estimate is denoted by P##j(t) • 

5       Wave data and analysis 

Field data were collected in the North Sea using a Waverider buoy in swell and wave growth 
situations. These data consist of 33 wave records and include some JONSWAP data as well 
as data from the severe storm of January 3, 1978 (Bouws, 1979). The wave records consist 
of time series of surface elevation (sampling rate 2 Hz) with a duration of approximately 20 
minutes. 

The random Fourier coefficient method (Tucker et al., 1984) was applied to generate 
relatively long time series of sea surface elevation. In this method, the sea surfaceT|(0 
consists of JV values sampled at discrete times tm with intervals At: 

X](tm) =  E Ucos (in fntm) + bnsm(2nfntm)} (5.1) 

in which fn = n/ (NAt) and where the random Fourier coefficients, an and bn, each are 
independent variables taken from a normal distribution with zero mean and variance 
S(fn)Af with S(f) the frequency spectrum. An inverse Fourier transform of the set of 
coefficients an and bn then leads to the desired time series. 

A total of 161 time series were generated, each with a time step of 0.5 s and a duration of 
2 hours and 16 minutes. A JONSWAP spectrum was used to compute the random Fourier 
coefficients. The peak enhancement factor y varied from 1.0 to 20 with a step of 0.125, and 
the peak period was 5.0 s. Typically, each wave record contained 2000 individual waves. 

6       Sampling properties 

It is well known that raw (unsmoothed) estimates of the spectral density S(f), based on 
a single record, have a relatively large sampling variability. This is generally reduced by 
applying some smoothing at the expense of resolution. The four spectral parameters, 
considered here, all depend on integrals over the entire spectrum and therefore have a 
relatively small sampling variability (random error), regardless of the degree of smoothing. 
The same is true for the bias in the estimates of v and K, because S(f) appears linearly 
in the integrals. For K this is also because the cosine and sine terms in (4.4) vary slowly 
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compared to the unsmoothed estimate of S(/). The parameters Qp and Qe , however, are 
proportional to an integral of the square of S(f). Therefore, sampling variability 'mS(f) 
causes a positive bias in estimates of Q   and Qe. 

As shown by Elgar et al. (1984), the expected value of Qp is given by 

E{<?,} = 0,(1 + 1/11) (6.1) 

in which n is the effective number of frequency bands. A similar analysis has been 
performed for the Qe parameter, with similar result. The parameters K and v are not 
affected by any smoothing of the spectrum, because they depend linearly on S(f). For 
smoothly varying spectra (such as analytically expressed spectra), Qp and Qe are measures 
of peakedness in the sense of concentration of energy near a single frequency (which is the 
conventional interpretation), but for estimated spectra it is just as much a measure of all local 
peaks and thus of spectral roughness due to sampling variabil ity. Therefore, the parameters Q 
and Qe are no suitable spectral width parameters, and not even useful in relation to wave 
grouping (Van Vledder and Battjes, 1992). 

The sampling properties of above parameters are given in Table 1, based on the analysis of 
a typical North Sea wind wave record. 

1 

3 

5 

7 

9 

Table    1 Computed values of Q , Qe, K and v as a function of the number n of 
raw frequency bands used in the spectral smoothing. 

The results confirm that estimates of the parameters v and K are practically free of bias, 
whereas estimates of the parameters Q and Qe are strongly biassed. The results for the 
latter two parameters are nearly proportional to (1 + 1/n), which is in agreement with the 
theoretical result of Elgar et al. (1984). The dependence of estimates of Q and Qe on the 
amount of smoothing makes them unsuited as measure for spectral width, especially when 
the amount of smoothing is not known. 

QP Qe K V 

6.23 7.17 0.622 0.346 

4.02 4.59 0.620 0.347 

3.50 3.97 0.624 0.346 

3.57 4.04 0.620 0.344 

3.33 3.82 0.609 0.351 
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7       Effect of time series duration 

Nelson (1987) and Medina and Hudspeth (1990) argue that long data records are required 
in order to reduce the variability in the estimates of wave group parameters to an acceptable 
level, since the standard deviation of group lengths is of the same order as their mean. 
Nelson (1987) recommends to use data records of at least 2 hours duration. Since such long 
data records are difficult to collect, time series of sufficient duration were generated 
numerically. 

The effect of record duration on the variability of group length statistics was analyzing by 
using 153 simulated time series of 2 hours and 16 min duration, and by using 153 short time 
series with a duration of approximately 20 minutes. The results are shown in Fig. 1. Shown 
are the mean group lengths jt as a function of pHH,, together with the relation according 
to Kimura's theory. 
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Fig. 1 Observed mean group lengths y'x as a function of the correlation between successive 
wave heights pHHt. Triangles (field data), crosses (simulated data), solid line 
(relation 2.8). Panel a), simulated time series of 2 hour and 16 minutes duration, 
panel b) simulated time series of 18 minute duration. 

These results show that long time series of surface elevation reduce the variability in 
estimates of the mean group length and correlation coefficient to an acceptable level (i.e. the 
data points cluster around the theoretical line). The results shown in panel b), are both based 
on time series of approximately 20 minute duration. As can be seen, the variability around 
the theoretical line is of the same order, both for field dataand simulated data. 
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8       Effect of varying upper integration limit 

The effect of changing the upper integration limit on the estimates of above four spectral 
parameters is shown in Fig. 2. Based on a simulated JONSWAP spectrum, the dimensionless 
upper integration limit fuplfp was varied over the range 1 to 4. 
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Fig. 2: Variation in the estimates of Qp, Qe, K and v as a function of the dimensionless 
upper integration limit fuplfp- 

The results indicate that for fuplfp>2 the K parameters is converged to a limiting value, 
whereas for fuplfp > 3 the Qp and Qe are converged to their final value. The v parameter, 
however, is still increasing for fwlfp = 4. These results indicate that the K is least sensitive 
to the choice of the upper integration limit. 

9  Spectral computation of correlation coefficient 

As noted by Battjes and Van Vledder (1984), IAHR (1992), Chandler and Masson (1992), 
the spectrally computed coefficient of correlation between successive wave heights 
(>nnj(Tm02) is consistently smaller than its time domain estimate pHHt. This is illustrated 
in Fig. 3. Possible reasons for this underestimation have been considered by Stam (1988), 
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who identified 3 assumptions used in the derivation of the joint distribution of succeeding 
wave heights: 
1 The underlying stochastic process is Gaussian, 
2 the frequency spectrum is narrow, and 
3 the joint distribution of two values of the amplitude envelope R(t) and R(t + t:) is 

translated into the joint distribution of succeeding wave heights by defining succeeding 
wave heights as twice the values of R(t) and R(t + Tm02), respectively. 

The first, Gaussian, assumption implies that the sea surface can be considered as a linear 
sum of mutually independent harmonic components. Possible non-linearities would increase 
the difference between the time and frequency domain estimates of the correlation 
coefficient. A possible effect of non-linearities has been investigated by Stam (1988) by 
analyzing wave flume experiments with different values of the ratio of water depth d over 
the deep water wave length L0. These investigations indicate that non-linearities have a 
negligible effect. Thus, the linear assumption is not inconsistent with Stam's experiments. 
The linear assumption is also supported in the literature (e.g. Elgar et al., 1984; Chandler 
and Masson, 1992). 

The second assumption is related to the existence of a well defined envelope. As argued by 
Battjes (1974), the assumption of a narrow spectrum is not necessary for the validity of the 
bi-variate Rayleigh distribution. The validity of this distribution was verified by computing 
the K parameter directly in the time domain and comparing it with pHHt. As noted by 
Battjes  (1974),   K2   is equal  to  the coefficient of linear correlation between squared 
succeeding wave heights: 

*HH,t   =    '-^-^  (9-D 
,72 \2 

The relation between pHHt and KHHt is illustrated in Fig. 4, together with the theoretical 
relation (2.8). The agreement is good, which supports the validity of the bi-variate Rayleigh 
distribution. 

The third assumption, a wave height is twice the amplitude at the time of a wave crest, is 
only valid for narrow spectra. For broader spectra, the use of wave envelope can under- 
estimates, as well as over-estimate computed wave heights. This will affect the correlation 
between succeeding wave heights in case wave heights are based on wave amplitude values. 
Following Stam (1988), this was inspected by computing the correlation between succeeding 
wave crests (or maximum amplitudes). To that end the correlation coefficient between 
succeeding wave crests (or maximum amplitudes) pM, was computed: 
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PAA,t 

^ZlAt-A^-A 
(9.2) 

±Z(Ar 

in which A is the mean crest elevation. Estimates of this correlation coefficient have been 
compared with time domain estimates of the K parameter, defined similarly as *HHt, but 
now in terms of wave amplitudes: 

*-AA,t 

±Z(A1- 
(9.3) 

72 \2 

Inspection of the relation between p^ t and KM t (not shown here) gives an even better 
agreement with theory (Eq. 2.8) than between KHH( and pm>1- These results suggest that 
the bi-variate Rayleigh distribution is better suited to describe the joint distribution of 
succeeding wave amplitudes than of succeeding wave heights. Based on this notion, the 
relation between p ATm02) and Ky t was investigated. The result thereof is shown in Fig. 
5. 
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Fig. 3: Relation between Kmt and pmt 

Crosses (simulation data), 
triangles (field data). 

Fig. 4  Relation between K^   and 
P/(-^n02)> Crosses (simulation 
data), triangles (field data), 

solid line (relation 2.8). 
Fig. 4 shows good agreement between KHHt and pHHt according to theory. The agreement 
between K^ , and *f(Tm02) is rather good which implies that theory of envelope statistics 
is applicable to wave heights, but not to wave heights. The difference between K„„( and 
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K/ (TmOi) can be attributed to the transformation of amplitudes to wave heights by a factor 
2. 

The assumption that the wave height is twice the value of the amplitude envelope at the time 
of a wave crest was considered by Tayfun (1990). An improved estimate of the wave height 
is to define a wave height as the sum of two values of the wave envelope separated by a time 
lag of half a wave period T: 

H = A(t)+Alt + ±T\ (9.4) 

Substitution of Eqs. (9.4) into the definition of the correlation coefficient gives (Van 
Leeuwen, 1988): 

cov(A(tt) +A{ti + \T), A(t, + T) +A(fj+fr)) 
A     =  i ? 1—L (9.5) 

a (A(tt) + A(tt + \ T)) a JA(tt + T ) + A(t, + f T )) 

Elaboration of Eq. (9.5) leads to: 

P^,( = —: ^^ i— <9-6> 

In addition, the effect of finite bandwidth on the mean zero-crossing wave period is 
considered. Such a correction was given by Tayfun (1990): 

T = Tm02[l -V) (9.7) 

with v the spectral width parameter proposed by Longuet-Higgins (1975). Replacing the 
wave period T in Eq. (9.6) by the corrected expression of Eq. (9.7) gives: 

Pffl,/(?)+2PM,/(;r)+Pffl,/(?) 
PHH,t =  " p — (9-8) 

2+2Pw<lr) 

The results of the improved method of computing the correlation coefficient between 
successive wave heights from the spectrum are shown in Fig. 6. 

The effect of these corrections is to remove almost all of the bias in the spectral computation 
of the correlation coefficient between succeeding wave heights. 



958 

.0 

P(     .6 

.4 

.2 

COASTAL ENGINEERING 1992 

1.0 

.0      .2      .4      .6      .8     1.0 
Km,t 

Fig. 5  Relation between K^   and py(rm02)    F'S- 6: Relation between pHH, and p^ 

10     Conclusions 

the mean group length is independent of the group length distribution. 
statistical variability distorts the inter-relationship between the parameters Qp, <?«,,* 
and pHHt, as proposed by Medina and Hudspeth (1990). 
the Q , Qe and v parameters are not suited as spectral group parameters. 
the K parameter is a good parameter to relate wave grouping with the spectral shape. 
the Qp and Qe parameter are not suited as measures for the spectral width. 
long data records are necessary to decrease the variability in group length statistics to 
an acceptable level. 
the K parameter is not sensitive to spectral smoothing, and least sensitive to the choice 
of the upper integration limit. 
the  improved  method of computing the  spectral  correlation coefficient removes 
practically all bias with respect to previous computations. This improved method enhance 
the applicability of the K parameter in relation to wave grouping. 
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