
CHAPTER 61 

LOW FREQUENCY WAVES IN THE SURF ZONE 

Gary Watson1 and D. Howell Peregrine2 

ABSTRACT 

The generation of low-frequency waves (LFW, also known as 'infragravity waves') 
within a two-dimensional surf zone is investigated numerically using a short-wave 
resolving model. In this simplified model, based on the nonlinear shallow-water 

equations, breaking waves are represented by 'bores', at which there are jumps in 
both water depth and velocity. Some idealized trains of modulated waves are then 
used to investigate how LFW may be generated by forcing within the surf zone, as 
opposed to the mechanisms of bound wave reflection and moving break point forcing. 
In this way, the process of LFW generation may be examined in some detail. The 
model is also compared with some measurements of irregular waves in a flume: good 
agreement is obtained. 

INTRODUCTION 

Low-frequency waves (LFW) are generated by the transfer of energy from modulated 
high-frequency waves (short waves) when they propagate into shallow water near the 

shore (Hamm et al., 1993). The energy transfer may be thought of as being brought 
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about by the variations in short-wave momentum flux (radiation stress) as the short 
waves of varying amplitude propagate over changes of water depth and break 
(Longuet-Higgins & Stewart, 1964). Past work on modelling LFW generation has 
used linear theory for the short waves and their radiation stresses. Empirical 
assumptions about wave amplitudes within the surf zone are used to estimate the 
radiation stress forces (Gallagher, 1971; Symonds et al, 1982; Nakaza & Hino, 1991; 
Schaffer, 1993; List, 1992; Roelvink et al., 1992). 

Three particularly significant aspects of the generation process have been 

discussed: 
(1) "Bound" LFW are generated with the short-wave groups and these grow 

as they propagate shorewards (Longuet-Higgins & Stewart, 1962; Agnon, 1993). The 
bound waves are released to propagate freely when the short waves lose their energy 
by breaking, or when they propagate over depth changes such as bars. 

(2) Modulated short waves break in different depths. The radiation stress 
gradient is negative to shoreward of the break point and positive to seaward. LFW 
are generated as the break point moves (Symonds et al., 1982; Schaffer, 1993). 

(3) Within the surf zone, the wave set-up fluctuates in response to fluctuations 
in incident wave amplitude. This rising and falling mass of water at the shoreline 
generates LFW. If the surf zone is saturated this effect is directly related to (2) but 
in general, modulations will penetrate into the surf zone and cause a complex time- 
varying radiation stress field (List, 1991). 

These investigations have suffered from the disadvantage that questionable 
assumptions are made about the validity of linear theory for the propagation and 
radiation stresses of breaking waves within the surf zone. An alternative to this 
'wave-averaged' approach is to use short-wave-resolving models to study the 
generation processes in more detail, without the need for such assumptions. Here we 
report studies of LFW generation using the nonlinear shallow-water equations. These 
are particularly appropriate in the inner surf zone, where the waves have formed into 

turbulent bores (Packwood, 1980) and they have been proved adequate for modelling 
breakers on a shallow beach (below, also Cox et al., 1992). It is in the surf zone that 
LFW have their largest amplitudes and the above generation mechanisms act. Other 
nonlinear equations such as the Boussinesq equations are only valid for non-breaking 
waves (although recent efforts have been made to extend their validity into the surf 
zone: see Schaffer et al., 1992). The shallow-water equations are thus best suited to 
the study of mechanism (3) above, and it is this which is discussed below. 

Initially, our attention has been confined to one horizontal dimension and a 
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plane beach. The situation is thus simplified by the exclusion of edge waves and 
longshore currents. Bottom friction has been neglected, because it introduces an 
unnecessary empirical element into the model. Previous work has suggested that it 
has no qualitative effects, and that quantitative differences are mainly important in 
the very shallow swash zone (Packwood, 1980). Beach porosity has also been 
neglected for simplicity. 

MATHEMATICAL MODEL 

The motion of a shallow layer of water, if the length scale of the motion is much 
greater than the water depth, may be described by the shallow-water equations for the 

conservation of mass and momentum, 

dt + (ud)x = 0 (1) 

(2) ut + uux + g(d-h)x 0 

where u is the depth-averaged flow velocity, d the water depth, g the acceleration due 

to gravity, h(x) the undisturbed water depth and -hx the local bottom slope (assumed 

small).  Subscripts indicate differentiation. The surface elevation is r\ = d-h.  The 

variables are illustrated in figure 1. 
In appropriate conservation form, the equations are: 

dt yudJ 

f 

dx 

ud \ 

111 u d + —gd 
2 

( 0 
gdh 

(3) 

Figure 1: Sketch showing variables referred to in the text. 
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or,     U   + Fx = S. (4) 

U is a vector of the conserved quantities mass and momentum, F is the flux of those 
quantities and 5 is a source term due to the bottom slope. These nonlinear, 
hyperbolic partial differential equations admit the development and propagation of 
discontinuities which represent bores at which both mass and momentum are 
conserved. These fundamental conservation properties are important to ensure that 
the basic physics is correct. They mean that no empirical terms are required, even 
for wave breaking, although this does not give a detailed model. The conservation 

of mass and momentum at a bore may be demonstrated mathematically by integration 
of eq. (4) to yield the hydraulic jump relations. 

A useful way in which to write eqs. (1) and (2) is in the characteristic form. 

This is obtained by making the substitution c2 = gd (c is the local long-wave speed), 

rearranging, and expressing in terms of time derivatives along certain trajectories: 

— (u+2c) = ghr   on   — = u + c (5) 
dt                                 dt 

— (u-2c) - ghr   on   — = u-c. (6) 
dt                                dt 

In terms of the Riemann invariants, R* = u + 2c and R~ = u-2c, these are 

R + t + (u + c)R\ = ghx (7) 

R~t + (u-c)R-x = ghx. (8) 

Eqs. (5) and (6), or (7) and (8), indicate that the quantities R* and R~ propagate 

along the characteristics at speeds u + c and u-c respectively, changing at a rate ghx 

as they do so. u + c and u-c are equal to the local long-wave speeds of shoreward- 

and seaward-propagating waves respectively, advected by the local flow velocity u. 

R* and R~ thus specify the shoreward- and seaward-propagating waves, 

respectively, a fact which is very useful in analysing results.   At bores, there are 

jumps in R* and R~ (Peregrine, 1974). 

The boundary conditions to be satisfied are as follows. The shoreline 

boundary conditions are that the water depth becomes zero and its position xs(t) 

moves such that it has the same velocity as the water: 
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dx 
d(xs[t],t) = 0,       U(JC,W,0 = —-• <9> 

at 

The appropriate seaward boundary conditions depend on the particular 
situation being studied. For wave modelling on a real beach, we need to prescribe 
the incident waves and yet permit outgoing waves to escape without reflection. This 
is done using the Riemann invariants discussed above.   As long as the flow is 

subcritical (\u | <c) at all times, R~ propagates into the domain at speed u + c and/?" 

propagates out of it at speed u-c. R~ at the seaward boundary must thus be 

computed from the solution just inside, using eq. (8).   Incident waves are specified 

by prescribing R*(t).    In supercritical conditions, both R+  and R~  would be 

specified if u>c, but neither need be specified if u< -c. Supercritical conditions do 

not occur in the cases studied here. 
For wave tank experiments, the correct seaward boundary conditions must be 

chosen to fit the data that are available. In the case discussed below, the water depth d (t) 

is set equal to that measured at a wave probe, with R~ computed as before. 

Unfortunately this permits non-physical reflections at the seaward boundary, which 
must be borne in mind when interpreting the results. If the entire flume is to be 
modelled, the mode of generation must also be modelled correctly. 

NUMERICAL METHOD 

A new numerical scheme, the weighted average flux method, was adopted for the 
solution of these equations. Invented primarily for aerodynamics, it is a development 
of currently favoured methods such as Godunov's and Roe's. Toro (1989) introduced 
the method for a simple advection equation and for the Euler equations of 

compressible gas dynamics. Toro (1992) applied it to the shallow-water equations 
for water of uniform depth. Watson, Peregrine & Toro (1992) adapted it for use with 

a moving shoreline and variable depth. 
The method is 'shock-capturing', in that discontinuities (bores) are 

automatically treated correctly without the need for a special tracking algorithm. 
Bores are followed very well and for a given accuracy less discretization points are 
required than with most methods. It is found to be more efficient and robust than 
previously used methods such as the Lax-Wendroff scheme used by Hibberd & 
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Peregrine (1979). 
The essence of the method consists of solving the initial-value Riemann 

problem for the shallow-water equations in each cell, with constant data in each half 
of the cell and a jump at the mid-point. This is done analytically using Riemann 
invariants and the mass and momentum conditions at bores. In this way the average 
mass and momentum fluxes in each cell are estimated one half-timestep in advance. 
A Total Variation Diminishing (TVD) adjustment is then made to the flux average 
in order to eliminate spurious oscillations near bores. This is done by means of 
upwinding, using a flux limiter to reweight the flux average (hence the name, 

'Weighted Average Flux'). The TVD procedure effectively makes the scheme 
somewhere between first and second-order, so as to achieve a compromise between 
accuracy and stability. An explicit finite difference scheme is used for advancing in 

time. Each time step Atn must be less than the time taken for the fastest wave in 

the solution to propagate one grid point (the 'CFL' condition). 
The shoreline boundary conditions (9) are not solved explicitly, but are 

approximately satisfied in the model. Any negative values of d are reset to zero and 

a dry-bed Riemann problem is used at the next timestep (Toro, 1990). As the depth 

becomes very small near the shoreline, large errors would result if the unmodified 
scheme were used. This is because small errors in the momentum variable ud 

become large errors in u when divided by a small value of d. In order to avoid such 

errors, an alternative approximation is used for u wherever the depth is less than a 

suitable small depth tolerance dtol. To plot the position of the moving shoreline, 

another small depth ds is chosen and the position of that depth is plotted. 

The seaward boundary conditions were implemented along the lines mentioned 
above, using a simple finite difference approximation to eq. (8). Note that it is 
necessary to check whether the flow is in fact subcritical before using this scheme. 

RESULTS 

Before proceeding with more complicated cases, the numerical scheme was tested 
against an analytic solution for non-breaking shallow-water motion on a beach 
(Carrier & Greenspan, 1958). The test showed good agreement, except for a small 
error in velocity very close to the shoreline. 
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Some Idealized Illustrations. 

Figures 2 and 3 illustrate the generation of a single low-frequency cycle by an 

idealized wave group. The input R*(t) consists of fully modulated sinusoidal waves 

cut off after one group of ten waves. Figure 2 shows a perspective view of the 
surface elevation solution in space-time. All variables are dimensionless, with the 
beach slope scaled out of the problem. In this example, a slope of 1/30 and an 
offshore depth of 1 m would correspond to a wave period of 5 s and a wave height 
of 0.8 m. The waves steepen into bores as they travel towards the beach, decreasing 
in amplitude and slowing down as they do so. In the first half of the group, each 
successively larger wave pushes more water up the beach face. As the wave 
amplitude decreases in the second half of the group, this water recedes back down 
the beach. The inertia of the backwash of these waves pulls the shoreline water level 
down beneath the still water level and it finally rises rather rapidly to its initial level. 
This rising and falling motion, on the time-scale of the wave group, shows up clearly 
in the shoreline position (thick line). It generates a low-frequency wave which 
propagates offshore, and which can just be seen in the latter half of the plot. 

In figure 3 the incident and outgoing waves are separated by means of the 

Riemann invariants. 2c±u (-/?*) has been plotted rather than u±2c so that higher 

values always correspond to deeper water. These are plotted at different offshore 

distances after subtraction of the undisturbed value. At x = 0.2 the beach is normally 

dry, but values become defined when a wave runs up past this position. 

The incident invariant shows the waves steepening and decreasing in 
amplitude as they approach the shore, and the raising of the mean level in the middle 
of the group. This corresponds to the set-up which is forced by the wave group. It 
also shows the modulation of the group becoming weaker as the waves saturate. The 
outgoing invariant shows the almost complete absence of short waves travelling away 
from the beach, because they have dissipated their energy and are not reflected. An 
asymmetric low-frequency pulse is seen to propagate away from the beach, 

decreasing in amplitude as it does so. Note that at x=0, positive elevation is 
approximately in phase with the peak of the incident group (but this is expected to 
depend on group length). 

The incident wave group used in figure 2 is not very realistic, since such large 
waves are not in reality sinusoidal. Also, large-amplitude sine waves have a net mass 
transport associated with them because the water is deeper when the velocity is 
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onshore (wave crest) and shallower when it is offshore (wave trough). This transport 
will be an increasing function of wave height and thus will cause a LFW to be 

generated by the group. Although a real wave group will have a mass transport 
associated with it, it will not necessarily be the same as that of these sine waves, and 

it may be thought of as being part of the bound wave driven by the group. In this 
example the LFW may thus be too large: an incident wave group is normally 
accompanied by a bound wave of depression, whereas ours is not. The bound wave 

Onshore 
Distance 

Figure 2:   Response to a single wave group.  Perspective view of space-time plot 
of surface elevation, including shoreline motion. 
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Figure 3:  Plots of incident and outgoing wave signals (Riemann Invariants) at 
various distances offshore, for the waves in figure 2. 
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will depend on the offshore topography, in a way which is being investigated. A 
theory for bound waves in moderately shallow water, where the theory of Longuet- 
Higgins & Stewart (1962) fails, has recently been derived by Agnon (1993). 

In the mean time we look to the other extreme and present an example where 
there is no mass transport associated with the wave group. The wave shape is also 
modified to the form of a 'sawtooth', representing waves which have already broken. 
The mass transport in each wave is forced to be zero by choosing appropriate values 
of the peak and trough water depths. The results from this wave group are shown 

in figures 4 and 5, which are equivalent to figures 2 and 3 and have the same scales. 
In these results also, a similar LF pulse is generated. Its amplitude is about 

half that in the previous case. The trough of the wave is deeper, indicating that the 

,-»- 
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Figure 4:  As figure 2, but for a group of breaking waves with no mass transport. 
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Figure 5:  As figure 3, but for a group of breaking waves with no mass transport. 
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outgoing wave, like the incident wave, carries little mass. The phase of the pulse at 
x=0 relative to the incident wave goup is also slightly different, with the peak 
occurring about one fifth of a cycle (70°) earlier and being more sharply defined. 
Note that this corresponds closely to the different shape of the incident pulse at 
thestill-water shoreline Qc=0). In both cases, the shape of the outgoing pulse is close 

to the shape of the low-frequency component of the incident group at this position. 
We conclude that even for a wave group where the bound wave component 

is small, a significant LFW will be generated if the groupiness persists inside the surf 
zone. Note also that in both cases, the amplitude of the LF pulse is such that the 
propagation velocity of the incident short waves is modified significantly. This 
interaction is not usually treated in wave-averaged models, nor is the substantial 
shoreline excursion. 

Experiments are under way to verify these results for single wave groups in 
a wave flume. The effect on the LFW of changes in incident wave amplitude, period 

and group shape remains a subject for further research. 

Comparison with Wave Flume Experiments. 

In order to assess the relevance of the model to real waves, comparison is made with 
data from some wave flume experiments. The measurements are supplementary to 
those reported by Hansen & Svendsen (1979), and were made in the same flume. 
The measurements consisted of a series of depth gauges within the surf zone on a 
slope of 1/34.26. Data from the furthest offshore of these gauges were used to 
specify  the  waves   at  the   seaward  boundary  of the  model.     Since   velocity 

measurements were not available, the incident Riemann invariant R+ could not be 

found exactly at the boundary. Instead, the boundary condition was approximated by 
setting the depth equal to the measured value, and using the outgoing invariant to 

compute the velocity.  As already noted, this is not ideal. 
The result from one such run is given in figure 6. Surface elevation is plotted 

against time, at each offshore distance where a wave gauge was located. The first 
wave reaches the offshore probe at about 20s after startup from rest. The measured 
data are plotted with a solid line and the model result with a dashed line. The two 
are identical at the furthest station offshore (x=-2.81 m), which was the seaward 
boundary for the numerical model. As the shore is approached, differences begin to 
appear between the two. 

Except for the two gauges closest to shore, these differences are small and the 
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Figure 6: Comparison between measured and modelled surface elevation for 
irregular waves in a flume, data courtesy of J.B. Hansen and LA. Svendsen. 
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agreement is very good. Propagation speeds, and changes in wave amplitude and 
shape, are reproduced well by the model. This is true even for the small waves at 
the beginning of the record. The onset of breaking is reproduced well by these 
equations, as was also found by Packwood (1980). At the two shallowest gauges, 
larger differences begin to appear. Some waves are missing altogether in the model 
result. This is because the waves did not reach this location in the experiment. At 
f=36s in the data from *=-0.61, there is a negative jump in surface elevation which 

was not present in the data. This results from a bore being forced to move back 
down the beach by the backwash from the preceding wave. The differences in this 
very shallow water may be due to the neglect of friction in the model. As in the 
above example, small changes in the position of a bore relative to a wave gauge may 
produce a large change in the time series at the gauge. 

Despite these differences in high-frequency detail, the low-frequency 
component of the motion is very well reproduced in the shallow water. This 
manifests itself as changes in surface elevation on a timescale of about 10 seconds. 
This confirms that the nonlinear shallow-water equations used by the model contain 
all the essential components necessary for the LFW generation process to be 
modelled quite accurately. 

CONCLUSIONS 

The nonlinear shallow-water equations have been shown to provide a good basis for 
the modelling of LFW generation in the surf zone. Comparison with wave flume 
data indicates a good reproduction of the long-wave motion everywhere, and of the 
short-wave properties except in very shallow water. Runs using idealized wave 
groups illustrate the process by which LFW are generated by forcing within the surf 
zone, as distinct from breakpoint forcing or bound wave reflection. 
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