
CHAPTER 56 

FREAK WAVES IN UNIDIRECTIONAL WAVE TRAINS AND 
THEIR PROPERTIES 

Takashi YASUDA* , Nobuhito MORI** and Kazunori ITO* 

ABSTRACT 

This study aims to make clear the cause and occurrence condition of two- 
dimensional(2-D) freak waves by solving the hydrodynamic equations of 2-D ir- 
rotational flow for nonlinear waves with various spectra corresponding to swell 
from wind waves and describing the long-time evolution. As a result, it is shown 
that the third order resonant interaction causes the 2-D freak waves of which 
surface profiles are very similar with those observed in nature and multiplies the 
occurrence probability with the decreasing of the spectral bandwith in deep wa- 
ter. Conversely, the feature of the freak waves —single and outstanding wave 
height— gets prominent with the broadening of the spectral bandwith. 

INTRODUCTION 

In recent years there has been a growing interest in single extreme waves 
referred as freak waves. Freak waves are individual high waves having severely 
damaging potential and are defined as waves with larger heights than two times 
of significant wave heights. There is no doubt on the occurrence of freak waves in 
nature because many reports are presented on their damages on offshore platforms 
at deck level and so on. However, the cause and properties of freak waves are 
still not so clear, although the state of the research on freak waves is already 
summarized at NATO Advanced Research Workshop in 1989[Peregrine,1990] and 
some explanations are suggested as their possible cause. 

Laboratory measurement(Stansberg,f990) showed that a freak wave can 
be generated in a 2-D wave flume. This is an fairly strong evidence showing 
that some freak waves can actually occur in a unidirectional wave train without 
the effects of directional contents, wave focusing and currents. However, so def- 
inite explanation has not yet been suggested for its occurrence.   In the case of 
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a quasi-monochromatic wave, Dold & Peregrine(1986) solved the fully nonlinear 
hydrodynamic equations for 2-D irrotational waves by using a boundary integral 
method and showed that a unidirectional wave train as gentle as fca=0.10 under- 
goes a considerable modulation in its envelope and develops into breaking due 
to the nonlinear modulation. Their result suggests that the modulation due to 
resonant interaction might generate a freak wave in the 2-D domain. However, 
even if freak waves in nature could be treated approximately as long crested(2-D) 
waves, it remains unchanged that they must be treated as random waves having 
considerably broad spectral bandwidth. We hence are required to answer the 
question whether or not the resonant interaction can actually generate such freak 
waves as observed in nature in the 2-D wave trains having the broad band specra 
similar with those in field. 

In this study, we focus our interest on 2-D freak waves and make clear their 
cause and occurrence condition. For that purpose, we solve the hydrodynamic 
equations of 2-D incompressible and inviscid fluid for the waves having various 
spectra from swell to wind waves and perform intensive numerical simulations 
describing their long-time evolution. On the basis of the simulated results, we 
investigate relationships between their initial conditions and the time evolution 
and give an answer to the question whether or not 2-D freak waves can actually 
occur in random wave trains with arbitrary spectra. Furthermore, we make clear 
their cause and occurrence condition. 

COMPUTATIONAL METHOD 

2-D vertical domain is assigned to be the usual spatial coordinates(x, «);the 
origin is located at the mean water level, x the horizontal coordinate and z the 
vertically upward one. Boundary conditions at the free surface of the irrotational 
flow are rewritten into the evolution equations with regard to the free surface 
profile T](x,t) and the surface velocity potential <j>s(x,t) at z = r/; 

Vt + <l>sx-rix-(l+Vx-rix)<i>z = 0\z=v, (1) 

&+9V + U%< - ^(1 + WM = 0 U, (2) 

where the subscripts denote the partial differentiations with regard to t and x, 
<pz the vertical gradient of the velocity potentiaki(a:,z,i), t the time and g the 
acceleration due to gravity. 

It is very difficult to solve eqs.(l) and (2) into the so-called Zakharov 
equation on the wavenumber space for waves having both the nonlinearity higher 
than the 3rd order and the arbitrary spectral bandwidth as far as based on the 
ability of present computer, although it was carried out for quasi-monochromatic 
waves by Yuen & Lake(1982). Hence, following Dommermuth & Yue(1987), we 
solve eqs.(l) and (2) on the phusical space. Considering the nonlinear correction 
to (f>z up to the Mth order in the wave field composed of J-Fourier modes, we 



FREAK WAVES 753 

formulate <j>z so as to satisfy the Laplace equation, V2</> = 0, and the boundary 
condition on the flat bottom at z=—h, <j>z=0\z=-h] 

M   M-m     k    J fjk+1 

.(*.*') = EE ^ E^W^ifcM), (3) 
m=l   k=0   *• j'=l 

cosh[&j(z -f h)\ 

cosh(fcjfe) 
y,^,,) = "^'T"^ exp(zV), (4) 

(m). 
where k denotes the wave number, h the mean water depth, <f>j(t) is derived by 
solving the following equations in order. 

m-l nk   ak 

*(m)(M,0 = -£^^(m"*)(a:»M)   (m = 2,3,---,M).        (5) 

In this method, an approximation is made on the expression of <j>z alone 
and eqs.(l) and (2) are solved directly in the physical space by using the pseudo- 
spectral method. While the spatial derivations of 4> \ <t>s and rj are evaluated in 
the spectral space, the nonlinear products are calculated in the physical space. 
The time evolution of r] and <f>s is made in the physical space by integrating 
eqs.(l) and (2) with the fourth-order Runge-Kutta-Gill method. An optimum 
FFT scheme for the vector operation in a super computer is used to delete the 
alising error generated in the computaion of the nonlinear terms and accomplish 
the fast computation. 

VALIDITY OF THE COMPUTATION 

The accuracy and convergence of the computational model are tested by 
giving the exact Stokes waves as initial waves. The first check of the accuracy 
is provided by examining the maximum difference of the surface wave profile 
£i = \k{i]n(x,t)-rie(x,t)}\max between the numerical solution r\n and the exact so- 
lution r]e during the propagation process from i/T=0 to 100. Here, T is the wave 
period. Further, the accuracy and convergence of the numerical solutions are 
tested by defining the error to the conservation law of the total energy E(t) as 
£2=|1 — E{t)lE(Q)\ and examining its time evolution. 

Table 1 indicates the maximum values of e\ and £2 for the shallow water 
waves with ka=0.l7 and kh=l and for the deep water waves with ka=0.2 and 
0.3 when the numerical computations are made under the condition of the values 
of M=3 and 4 and J=8 and 16. Here, a is the wave amplitude. Figure 1 
describes the time evolution of £2 for each numerical solution shown in Table 1. 
Both the error criteria, S\ and £2, indicate finite values because the values of M 
and J employed here are not large enough for the numerical solutions to agree 
completely with the exact solution. However, the values of ex are still considerably 
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small after the long time evolution of t/T=100. Further, although the values of 
e2 grow with oscillation, their envelopes are almost constant independly of the 
values of kh, ka, M and J and their amplitudes are sufficently small. We can 
hence expect the sufficient accuracy and convergency for the obtained numerical 
solutions if solving eqs.(l) and (2) by the aforementioned method. 

Table 1. Accuracy of the numerical solutions for the exact Stokes waves 

ka kh M J eiXlO3 e2xl03 

0.17 1 3 8 0.43 1.33 
0.17 1 4 8 0.37 0.85 
0.20 oo 3 8 0.42 0.72 
0.20 oo 3 16 0.42 0.72 
0.20 oo 4 8 0.42 0.70 
0.30 oo 3 8 3.05 5.75 

0) 

ka-0.17,kh-l.O0.N-16,M-3 
ka-0.IT,kh 
ka-0.20,kh- 
ka=0.20,kh= 
ka-0.30,kh- 

. 00, N- 1 6,'M = 
°°    , N-l 6, M- 
00    , N=l 6,M = 
00    ,N-16,M- 

t/Tp 
Figure 1. Time histories of the error criterion £2 

NUMERICAL SIMULATIONS 

Initial surface profiles rj(x, 0) is given by 

r/{x,0) = J2 \/2S(kn)(2ir/L0) sin(knx + e„) (6) 

where L0 is the total length of the simulated wave train, kn the wave num- 
ber of the n-th Fourier mode, en the phase constant of the Fourier mode given 
by a set of independent uniform random numbers uniformly distributed in the 
interval(0,27r) radians and S(kn) the desired wavenumber discrete spectrum into 
which the following Wallops continuous spectrum S(f) is transformed through 
the linear dispersion relation. 
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(a) m = 15 

^^4^^^ ff^k^\^^j^Hk% 

Mftl^vWVv\fy\^ 

kpx 2TT 

(b) TO = 30 
Figure 2.   Spatial surface profiles of a simlulated wave train 

at t/Tp=0, 30 and 60 (Ap/i=3.0,fcpa=0.17). 

S(f) = a#1/3
2 /I4-) (///„)-4 exp [-0.25m (///„)' 

where a is a constant satisfying the relation, 

H1/3 = 4.004 
J"    /"CO 

. o 

(7) 

(8) 

/p the spectral peak frequency, iJi/3 the significant wave height and m the spectral 
bandwidth parameter. The value of m=5 generally gives the spectrum of wind 
waves and those of m > 10 swell spectra. Initial surface potential <f>s(x, 0) is given 
here by the linear transformation of its conjugate r/(x,0). 

The numerical computations are made in the periodic space having the. 
length of L0 = 64Lp on the x coordinate; the subscript p denotes the quantity 
of the spectral peak mode. The values of M and J are fixed to 3 and 256, 
respectively. The time interval of the stepping is Tp/100. The simulations are 
performed with the accuracy of the energy error criterion e2 of which value is 
always less than 0.05, under the inital statistics comprised of kph=1.04, 1.36, 
1.72, 2.35 and 3.0, kpa=0A7, m=5, 10, 15 and 30. The accuracy is accomplished 
without any consideration except for de-aliasing.   This fact convinces us that 
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any breaking event does not occur during the propagation process because the 
breaking triggers the floating overflow error of the numerical solution. 

Figure 2 shows the computed surface elevations for the waves with the 
initial statistics of kph=3.0, kpa=0.17 and ra=15, 30. The free surface elevations 
at t/Tp=20 and 60 are considerably modulated in comparison with their initial 
ones and accompany single high waves characterized as freak waves because they 
are not part of a smooth wave group pattern and the crest heights clearly exceed 
those of their neighbours. 

NONLINEAR EFFECTS ON 2-D FREAK WAVES 

Surface profiles of 2-D freak waves 

Figure 3 shows the temporal surface elevation of the typical freak wave 
observed in the North sea(Sande£ aL,1990). The wave profile definitely demon- 
strates the feature of a typical freak wave that is single —not part of smooth wave 
group pattern— and has remarkable horizontal asymmetry and the crest height 
clearly exceeding that of its neighbours. 

Figure 4 indicates the spatial surface profiles of 2-D freak waves occurring 
in the simulated wave trains. The simulated wave profiles are easily found to be 
very similar with the observed wave profile shown in Fig.3, although there is a 
definite difference that the formers are spatial profiles in 2-D domain while the 
latter is temporal one in 3-D field. On the other hand, the wave profile of a linear 
freak wave shown in Fig.5 for comparison is mild and horizontally symmetric. 
We thereby notice that it is greatly differs from those shown in Figs.3 and 4 and 
very little possesses the aforementioned feature of the freak waves. This states 
that a linear combination of the Fourier modes cannot be probably the cause 
of the freak waves hitherto observed in nature even if it can generate the wave 
grouping containing a high wave of which height exceeds two times of Hi/3. On 
the contrary, the wave profiles shown in Fig.4 are very similar with that observed 
in nature(Fig.3) as mentioned. We could therefore say from the viewpoint of 
the similarity of both the wave profiles that freak waves can be generated by the 
3rd order nonlinear interation(resonant interaction) independently of the spectral 
bandwidth, that is, the 3rd order resonant interaction can be one of the causes 
of freak waves in nature. We should further notice that even if the occurrence 
of the freak waves might obey the Rayleigh distribution, which is based on the 
strict assumption of a narrow banded Gaussian process, the freak waves having 
the afrementioned feature —single and outstanding— never occurs from narrow 
banded linear wave trains. 

Figure 6 describes the time evolution of the freak wave during the propa- 
gation process from its appearing to disappearing. Its appearing and disapearing 
times are denoted with the open arrows. The freak wave is not so unstable as 
it instantaneously appears and disappears, but so stable as it keeps the profile 
during about one period at least. 
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Figure 3.   Temporal surface elevation of the freak wave observed 
in the North sea[Sand ef a/., 1990]. 

m 

A. A „A A A/\ \    ,A„ ..«*... \/\/ Jl/V v   V * V vv 

s 

200 250 

(a) m = 5 

kpx 

300 

-5 

1         1         1         1          I i        i        j        i        i 
1       !      _ 

5 
ft        . 

~ 

0 ^A^AAA^AAA . A    I   A.  A  11   A   n *AAA-^ rwvy" ^ Vl/ \J'\l\j^\j\J\/" n/lr^ 
c •  

.   v    ,    ,    , i - 

50 00 

kpx 

50 

(c) m = 30 
Figure 4.   Spatial surface profiles of the freak waves occurring in the 

simulated 2-D nonlinear wave trains(A)p/i=3.0,A:pa=0.17). 
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Figure 5.   Spatial surface profile of a linear freak wave which occurs 
in a 2-D linear wave train(fepfe=3.0,fcpo=0.17,m=15). 
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Figure 6.   Propagation process of the 2-D freak wave from its appear- 

ing to disappearing(fep/»=3.0, fcpo=0.17, m — 30). 

Nonlinear effects causing freak waves 

Figure 7 shows the time histories of the ratio Hmax/Hi/3 of the maximum 
wave height Hmax to H1/3 and Gi?(Groupiness Factor) of the spatial surface pro- 
files of the evolving simulated waves. For comparison, the results of linear waves 
and the 2nd order nonlinear waves are also shown. The 2nd order nonlinear wave 
solutin is derived by solving not eqs.(l) and (2) but the original hydrodynamic 
equations in which the nonlinear terms more than the 3rd order are deleated. The 
3rd order resonant interaction is not therefore taken into account in the 2nd order 
solution. It is found that nonlinear effects of the 2nd order are almost negligible 
on the values of Hmax./Hi/3 and GF, although it is well-known that they affects 
on the skewness of the free surface profiles. On the other hand, nonlinear effects 
of the 3rd order on those values are remarkable and grow with the narrowing of 
the spectral bandwidth.   The time evolution of Hmax/Hi/3 corresponds well to 
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that of GF in the nonlinear(M=3) wave train. We could hence say that the 3rd 
order resonant interaction strongly modulates the envelope of the wave train so 
that it multiplies the values of GF and Hmax and further causes the freak waves. 

Figure 8 shows the amplitude modulation of the peak and its side-band 
Fourier modes of the nonlinear waves(M=3) shown in Fig.7. The time evolution 
of the amplitude modulation of the side-band modes clearly corresponds to both 
the time histories of Hmax/Hi/3 and GF. It should be noticed that the value of 
HmaxlHi/3 exceeds 2 and the individual wave with Hmax becomes a freak wave 
at the time when the side-band modes become dominant to the spectral peak 
mode independently of the spectral bandwidth(m=15 and 30) and that these 
occur. This result demonstrates that the 2-D freak waves are generated by the 
side-band instability due to the resonant interaction. 
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2.0 

^1.4 
1 . 5 

kn   1   . 0 

0. 5 

Nonl i near!U-3 ) 

20 40 

(a) TO = 15 

60      ,/rp      80 
l/ip 

2.6 

2.0 

tC!   1.4 
1 . 5 

Et, 1 . 0 
CD 

0.5 

Nonl ineari M-3 1 
Nonl Ineari 2nd   ordar ) 
Linear 

X'WA. 
J . L 

20 40 60 t/Tp   
80 

(b) m = 30 
Figure 7.   Time histories of Hmax/Hi/3 and GF for the evolving nonlinear wave 

trains(M=3 and the 2nd order) and the linear one(fcp/j=3.0,A;pa=0.17). 
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(b) m = 30 
Figure 8.   Time evolution of the modal energy S(k) of the spectral peak mode(fcp) 

and its both side-band modes(kp±kpal/3) of the nonlinear waves(M=3) 
corresponding to the case reported in F\g.7{kph—3.0,kpa=0.17). 

Nonlinear effects on the occurrence probability 

Figure 9 compares the frequency distribution of Hmax/Hi/3 obtained from 
the spatial surface profiles at every time step of At/Tp=l of the simulated waves 
during the propagation process from t/Tp=0 to </Tp=75 with the following dis- 
tribution p{Hmax/Hx/3) derived from the Rayleigh distribution, 

p(xmax) = 2.832o;mo^exp(-f), (9) 

where xmax=Hmax/Hi/3, £=N exp (—1.416a;^aa.). Nmin and Nmax in the Fig.9 
denote the minimum value and the maximum one of the number of the zero- 
down crossing waves contained in the simulated waves during the propagation 
process. The frequency in the 2nd order nonlinear waves is not so influneced by 
the spectral bandwidth and is presumed to be almost same with that in linear 
waves bacause the 2nd order nonlinear interaction very little influences on the 
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SAMPLE   DIST 

(a) m = 5 

(b) m = 15 

wave height as mentioned above. The 
difference between both the frequenices 
(2nd and M=3) thereby indicates the in- 
fluence of the 3rd order resonant inter- 
action on the frequency. It could hence 
be found from the difference that the in- 
fluence of the resonant interaction is al- 
most negligible in the case of ra=5 but 
becomes non-ignorable over the region of 
ra > 15. We could thus say that the ef- 
fects of the resonant interaction become 
pronounced and the occurrence proba- 
bility of the freak waves accordingly in- 
creases as the spectral bandwidth be- 
comes narrower. 

Further, in order to investi- 
gate the influence of the number N 
of the zero-crossing waves on the ex- 
ceedance probability JJ, that the value 
of Hmax/Hi/3 is exceeds 2, that is, 
the occurrence probability of the 2-D 
freak waves, we compare the value of 
fj, obtained from the simulated wave 
train(M=3) with that given by 

H = l -exp(-./V/3041), (10) 

-LA 

Fig.9. 

which is derived under the assumption 
that N-v/a,ve heights obey the Rayleigh 
distribution. The result is shown in 
Fig.10 for the waves with the number 
N of the zero-down crossing waves con- 
tained in the initial waves, 70, 150 and 
500, respectively. The value of p, in a 
linear wave train shown for comparison 
corresponds well to the solid line given 
by eq.(10) and the difference between 
both the results could be regarded to be 
within the region of statistical variation. 

On the contrary, the value of fi in the nonlinear wave train largely exceeds that 
given by eq.(10) independently of the number of N. This suggests that the 
resonant interaction increases the occurrence probability of the 2-D freak waves 
10 times(JV=70) from 5 times(7V=500) of that given by eq.(10). 

(c) TO = 30 

Effects of the nonlinear inter- 
action and spectral bandwidth 
on the frequency distribution of 
Hmax/Hi/3 
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Figure 11 shows the relation between the frequency that the value of 
Hmax/Hi/3 of the simulated waves(M=3) exceed 2 during their propagation pro- 
cess and the value of GF averaged over the propagation process, <GF>. Symbols 
drawn with thick line indicate the values of the waves of which initial bandwidth 
parameter m equals to 30, those drawn with median line indicate the values with 
the initial statistics of m=15 and those drawn with thin line denote the values 
with ra=5. The mean number <N> of the zero-down crossing waves in this case 
is about 80~100, so that if those wave heights obey the Rayleigh distribution, 
the theoretical value of p(Hmax/Hi/3>2) is about 0.026. 

1  1 1—i  t i i i 11 1 i—i   i i i 11 j    r T 1—TTTTT 

;I3 •  Rayleigh distribution 
'Jo o     Nonlinear(M=3) /                - 
JO o *     Linear »-. O                           / 
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«u 0.5 / _ 
u 
c . 
C8 o                      / 
<D o                  *    / — 
<0 o 
X j-^ - 
m 

n _. —fa.«.j-_i_ i, iTrgnrT-j—i—1..J-11111 1— -1 1—L-L..LJ-J- 

To1 W- io3 io4 

The number of waves 

Figure 10.   Influence of the number N of the zero-down crossing waves on the ex- 
ceedance probability ^(H/H1/z>2)   [kPh = 3.0,kpa = 0.17,m = 30] 
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Figure 11.   Relation of the occurrence probability of the 2-D freak wave during the 

propagation process and the averaged value of GF over the process. 
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Table 2   Relations  of the  initial  statistics  to the frequencies(%)  of 
Hmax/H1/3>2, K>2 and x>0-65. 

m 
fCpil 

3.0 1.72 1.04 
Hmax/Hx/3 > 2 6.6 (1.3) 2.6(9.2) 0.0 (0.0) 

5 K> 2 23.7(14.5) 5.2(7.9) 18.4(19.7) 
X> 0.65 19.7 (1.3) 11.8(5.3) 5.2 (1.3) 

2.6 (0.0) 0.0(0.0) 0.0 (0.0) 
HrnaxlHi/3 > 2 22.3 (5.2) 1.3(0.0) 0.0 (1.3) 

15 K>  2 34.2 (0.0) 19.7(7.9) 2.6 (0.0) 
X> 0.65 14.5 (0.0) 17.1(1.3) 7.8 (0.0) 

1.3 (0.0) 0.0(0.0) 0.0 (0.0) 
HmaxlHi/3 >  2 23.7 (0.0) 2.6(0.0) 0.0 (0.0) 

30. K>  2 19.7 (0.0) 6.6(0.0) 0.0 (0.0) 
X> 0.65 13.2 (0.0) 9.2(0.0) 7.9 (0.0) 

0.0 (0.0) 0.0(0.0) 0.0 (0.0) 

Although the value of p(Hmax/Hi/3 >2), that is, the occurrence probability of the 
freak wave is independent of the value <GF> in the waves with the value of kph 
less than 1.72, the occurrence probability is multiplied with the increasing of the 
value of <GF> in the waves with the value of kph over 2.35. 

Following Klinting & Sand(1987), we calculate the frequencies that the 
ratio K,(=Hi+x/Hi) of the wave height to its neighbour exceeds 2 and that the 
ratio x{=1lmaxlHmax) of the crest height nmax to the maximum wave height Hmax 

exceeds 0.65, in addition to the frequency of HmaxlH\/3 >2 and show the val- 
ues of these frequencies to each initial statistics in Table 2. The numerical val- 
ues on the fourth line the case of kph=3.0 within the frame corresponding to 
each wave indicate the frequency satisfying simultaneously these three conditions, 
HmaxlH\/3, >2, /c>2 and %>0.65. The figures in parentheses indicate the values 
in linear waves with the same inital statistics. The frequency of Hmax/Hi/3 > 
2 increases as the spectral bandwidth gets to narrower. On the contrary, the 
conditions characterizing the freak waves, that is, the frequencies of K >2 and 
X >0.65 increase large as the spectral bandwidth gets to narrower. We could 
hence say that the 2-D freak waves incline to occur in deep water because their 
cause —resonant interaction— is strengthened to the maximum extent in deep 
water. Furthermore, it should be noted that although the occurrence probability 
itself of freak waves defined by Hmax/Hi/3 > 2 increase with the decreasing of the 
spectral bandwidth, the occurrence probability of the typical freak waves possess- 
ing the feature —single and the crest height clearly exceed those of its neighbour— 
with the increasing of the spectral bandwidth and becomes maximum under the 
broad band spectra corresponding to wind waves. 
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CONCLUSIONS 

The following major conclusions may be drawn from this study 
i) The 3rd order resonant interaction causes single extreme high waves typically 

characterized as freak waves in unidirectional wave trains with various spectra 
corresponding to wind waves from swell. On the other hand, the surface profile 
of a linear freak wave caused by a linear combination of the Fourier modes is 
mild and horizontally symmetric and is very different from those observed in 
nature. Since the resonant interaction is thus essential to cause the 2-D freak 
waves, its effects on the occurrence probability of the 2-D freak waves should 
be taken into account, 

ii) The resonant interaction multiplies the occurrence probability of the 2-D freak 
waves and its effects become pronounced as the water depth gets deeper and 
the spectral bandwidth gets narrower. However, the feature of the surface 
profile characterizing freak waves —single, remarkably horizontal asymmetric 
and extreme high waves— gets prominent with the broadening of the spectral 
bandwidth, that is, the feature is strengthened to the maximum extent under 
wind wave spectra in deep water. 
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