
CHAPTER 55 

Interrelation of Cnoidal Wave Theories 

by Masataka Yamaguchil 

Abstract 

The aim of this paper is to analytically clarify the 
interrelation among- all of the existing cnoidal wave 
theories of the third order approximation.  The result 
is that the Chappelear theory expressed with two expan- 
sion parameters is found to include the other theories. 
This means that they are able to be derived from the 
Chappelear theory by changing expansion parameters in the 
expressions of wave characteristics and integral proper- 
ties and identifying the definition for wave celerity to 
be used in the theory.  The expressions for the trajecto- 
ry of a water particle, mass transport velocity and inte- 
gral properties of waves are newly derived using these 
theories, and the wave characteristics and integral prop- 
erties are examined based on the numerical computation 
and comparison with the experiments.  As a result, use of 
the theory expressed with a single expansion parameter is 
recommended from a practical viewpoint.  The figures 
describing a limiting range of wave parameters for the 
application of the above-mentioned theory are also pro- 
vided by comparing wave characteristics and integral 
properties of the theory with those of Fenton's Fourier 
approximation wave theory. 

1. Introduction 

Higher order solutions of cnoidal waves have been 
derived by Laitone(1960, 1965; the second order approxi- 
mation, the second definition for wave celerity), Chappe- 
lear(1962; the third order approximation, the first defi- 
nition), Fenton(1979; the ninth order approximation, the 
first definition), Tsuchiya & Yasuda(1985; the third 
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order approximation, the third definition) and Isobe 
(1988; the third order approximation, the second defini- 
tion) .  These solutions are different from each other in 
the definitions used for the derivation of wave celerity 
and the expansion parameters for the expression of wave 
characteristics. 

Yamaguchi & Tsuchiya (1974) mathematically proved 
that the Laitone theory can be derived from the Chappe- 
lear theory within the second order approximation when 
the expressions of wave characteristics in the Chappe- 
lear theory are rewritten with the parameter in the 
Laitone theory under the condition that the same defini- 
tion is applied for the derivation of wave celerity in 
each theory. 

Now there are at least 4 kinds of third order cnoi- 
dal wave theories derived with different expansion 
parameters and definitions for wave celerity. 

The aim of this paper is to mathematically clarify 
the interrelation among these third order solutions and 
to examine the wave characteristics and integral proper- 
ties, and limiting conditions for practical application 
based on numerical computation and the comparison with 
experiments. 

2. Theoretical Considerations 

(1) Definitions for wave celerity 
Usually, either of the first and second definitions 

proposed by Stokes has been used for the determination 
of wave celerity, although Fenton(1990) recommends use of 
the term "approximation" in place of the term "defini- 
tion" .  The first and second definitions for wave celeri- 
ty are given respectively as 

17 = 0   or c
l = 1 (1) 

(2) f_lu"dz = 0 or c" = rpudzlpD 

where c is the wave celerity, u the horizontal water 
particle velocity in a fixed frame of reference, u the 
horizontal water particle velocity in a moving frame of 
reference, D the water depth, V  the surface displacement, 
z the ordinate taken vertically upward on the still water 
level, ' ' the time-mean, and superscripts 'I' and 'II' 
indicate the first and second definitions respectively. 
The first definition means that time-averaged horizontal 
water particle velocity at a level under the trough in a 
frame of reference moving with a constant speed vanishes, 
and the second definition means that time-mean of depth- 
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integrated momentum in a frame of reference moving' with a 
constant speed vanishes. 

Tsuchiya & Yasuda have defined the wave celerity as 
gradient of the characteristics in x-t space.  In this 
case, the Bernoulli constant in wave field of the steady 
state C is equivalent to that in the coordinate system 
moving with wave celerity in still water. 

C = gD + (c'")2/2 (3) 

where   g  is   the  acceleration  of  gravity.     This   is   tenta- 
tively  termed  the  third  definition for wave   celerity,   in 
which  case   superscript   'III'   is  used  as   the   indication. 

(2)   The  Chappelear  theory 
Chappelear   derived a  cnoidal  wave  theory with  two 

expansion parameters  LQ  and L3.     The  Bernoulli   constant 
and horizontal  water  particle  velocity  in  a moving frame 
of  reference,   wave   celerity and horizontal water  particle 
velocity  in  a  fixed  frame  of  reference  based  on  the  first 
definition  are   expressed  respectively  as 

C = {3/2+Lo(l+x2)+3Z.3+(9/10)Lo2(2+3*2+2x4) 

+6LOL3(1 + ^)+(3/2)L3
2
+(3/35)LO

3
(45+97^+97A;

<
+45A;

6
) 

+9L0
2L3(2+3*2+2x4) + 15LoL,2(l + x2)) gD (4) 

ul-[g~D = l+L3+L0x
2sn2rx+{Lo2(l+x2)+5LoL,}x2sn2rx 

+ L.Vsn4 rx - {ylD)\Zli)U2{x2-2{\+x2)x\n2u+3x4sn4rc) 

+ {(l/5)Lo3(7+19Ar2+7x4)+9L<,2Ls(l+A:2)+10LoL32}Ar2sn2r% 

+ {(9/5)Lo3(l+x2)+9Lo2L3}x,sn<rx +(6/5)L0Vsn6re 

- (l/4)(V£)2[3LoV(l+x2)+15Lo2L3Ar2+6{L0
3( -l+x2-xt) 

-SULsil+x^x'sn'rx+M-Ua+x^+SULsWsn'n 

+ 30Lo3xesn«rx] + (3nV(ylDYLo3{-x2(l+x2) 

+(.2+13x2 + 2xi)x2sn2rx-15(l+x2)x,snAn + l5x6sn6n} (5) 

c'lf^D = l + L3 + Lo(l-e) + 5LoL3(l-e) + (l/3)L,,2{5 

+ 4x2-5(l + x2)e} + l0LoU2(l-e) + (l/25)Lo3{81+U6x2 

+ 58^-(81 + 169^ + 8U4)e} + 3Lo2L3{5+4^2-5(l + ^2)e} (6) 

u'/JgD = Lo(l~e-x2sn2<fi)+5L0L3(l-e~x2sn24,) 

+ (l/3)L0
2{5+4x2-5(l + x2)e-3(l + x2)x2sn2<j, - 3x4snV} 

+ (y/£02(3/4)Lo2{*2 - 2(1 +x2)x2sn2</j + 3x4snV} 

+ 10LoL3
2(l -e- x2sir»+3L0

2L3{5+4*2 - 5(1+x2)e 

-3(l+^2)Ar2snV-3x4sn4^} + (l/25)Lo3{81 + 146^2+58x4 

- (81 + 169*2 + 81x4) e - 5(7+19x2+7x4)x2srr> 
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-45(1+*VsnV -30*6snV}+(3/4)(y/D)2[Lo3{(l + * V 

-2(.l~xz+x*)x!lstt*</>-5(l+x*)x<sni<fi+lQx,snt4l} 

+5L0
2L3{x2-2(l+xVsn2<4+3x<snV}] 

H3/16)(y/DyU{a+x2)x*-(2+Ux2+2x*)x2srf<l, 

+15(l+x2)x4snV-15*6snV} (7) 

where   x   is  the  argument  of  elliptic  function,   e=E/K,   K 
and E  are  the   complete  elliptic   integrals  of  the  first 
and  second kinds,   sn,   en and  dn  the  Jacobian  elliptic 
functions,   y=D + z,   y — -JZL0l2D and    4> = y(x~ ct)  • 

The   relation  between  two   expansion parameters   is 
written  as 

2L,+Lo(*2+e)+Lo2{(l/5)(-l+6x2+9*4)+2(l+;Oe} 
+6L«L3(A:2+e)+L32+Lo3{(l/175)(-102+223^+944^+675Ar6) 

+(l/25)(m+214x2+lllx4)e}+2Lo2L3{-l+6x2+9x< 

+W(l+x1)e} + l5LoU(x2+e) = Q (8) 

and  the  relation between wave  height  H  and  expansion 
parameters   is   expressed as 

H/D = X
2
LO{1+(1/4)LO(10+7AT

2
)+6L3+(1/40)LO

2
(251+369A:

2 

+ 151x4)+(5/2)LoL3(10+7*2)+15L32} <9) 

Yamaguchi et al.(1990) confirmed that the Chappelear 
theory is correct except for some printing errors, and 
newly calculated the trajectory of a water particle and 
integral properties such as energy flux. 

(3) Relation with the Tsuchiya & Yasuda theory 
Tsuchiya & Yasuda derived a cnoidal wave theory with 

a single parameter LQ. 

If the parameter L3 in the Chappelear theory is ex- 
panded into the power series form of LQ, L3 is expressed 
as 

U = -(l/2)(x2+e)L0+(l/40){4-24^+19x
< + 10(-4+7*2)e 

+55e2}Lo
2-(l/2800){-816+3884x2-5048x<+1375x6+(8316 

-21616x2+10941x<)e+2625(-8+9x2)e2+14875e3}Lo3 (10) 

and the relation between wave height H/D and Lo becomes 

HID = *2Lo+(l/4);e(10-5x
2-12e)Lo2+(l/8)x2{55-55x2 

+ 13x4+74(-2+x
2)e+96e2}L„3 (ID 

Substitution of L3 relation into the wave characteri- 
stics in the Chappelear theory yields the following 
expressions. 
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cm/Jgff = l-(l/2)(-2+x2+3e)Lo+(l/40){64-64*2+19*4 

+90(-2+*2)e + 135e2}Lo2-(l/2800){-10448+15672x2-7974x4 

+ 1375xe+21(2288-2288x2+563x4)e+36225(-2+*2)e2+36225e3}L0
3       (12) 

umIJ&5 = (l-e-^2sn2^)Lo+[(l/2){3-2x2-(7-A::!)e+4e2 

-(2-3Ar2-5e)^2sn2^-2^snV}+(3/4)(y/D)2{Ar2-2(l+^2)x2sn2^ 

+3x4snV}]Lo24<(l/200)[688-842*2+209*4-(2838-1888x2 

+63^)e+75(49-12«2)e2-1525e3+5{-76+148A:2-71x< 

+10(38-37*2)e-375e2}x2snV -180(2-3x2~5e)*4snV 

-240Ar6snV]+(3/8)(WZ))2U2(2-3^-5e)+2{-2+7x2+3^ 

+5(l+Ar2)e}Ar2snV-5(2+5Ar2+3eVsnV+20Ar6snV] 

- (3/16Xy/DY{ - x2(l+x2)+(2+13*2+2x 4)x2snV -15(1+x")x*sn4t 

+ 15x6snV}]Lo3 (13) 

These   expressions   coincide perfectly with  those   in 
the  Tsuchiya  & Yasuda  theory. Relation  between LQ  and 
the   expansion parameter   in  the Tsuchiya  & Yasuda  theory A 
is  given  as 

A = x2Lo (14) 

(4) Relation with the Isobe theory 
Isobe gave a third order solution of cnoidal waves 

expressed with relative wave height H/D. 

If the expansion parameters LQ and L3 in the 
Chappelear theory are expanded into the power series of 
H/D, LQ and L3 are written as 

U = (l/x'XHm-a/ix'XlOSx'-UeXH/D)2 

+(l/8Ar6){3(15-15^+4x<)-46(2-x2)e+48e2}(///D)3 <15 > 

U = -(l/2^2)(^2+e)(i//Z))+(l/40^){2(2 + 13^2-3^<) 

4-5(2 - 3x2) e -5e*KWD)2
+(1/2800AT

6
){-584 - 2659x2+2073*4 

-150A:6+(-511+401lAr2-86lA:4)e + 1050(l-Ar2)e2-175e3}(F/Z))3 (16) 

and if these LQ and L3 relations are used, the wave char- 
acteristics in the Chappelear theory are transformed as 

cu/^D = l+(l/2Ar2)(2-Ar2-3e)(^/Z))+(l/40Ar4){2(-8+8Ar2 

-3*4)+5(2 ~x2)e + 15e2}(#/£)2+(l/2800x6){1558-2337*2 

+ 1079x4-150x^2653-2653x2+203x4)e+350(2--x2)e2 

+ 175e3}(H/D)3 (17) 
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unlfiD = (l/x2)(l-e-x2sn24,)(H/D) + (l/4x4)[-2-x*+x*e 
+ 2e2+(6+x2-2e)x2sn^-4x"sn^ + Z(y/Dy{x2-2(l + x2)x2sn^ 
+3xisni<p}](H/D)2+(l/x6) ((l/200)[{l53+23x2-71x4+(-153-97x2 

+47^)e+25(-l+2Ar2)e2+25e3}+5{-101-27Ar2+19^ + 10(10 + x2)e 
-15e2}x2snV+20(32+2x2-15e)x4snV-240x6snV] 

+(3/8)(y/Z))2[( - 8+2x2+7e)x2+2{2(4+6x2 - x4) - 7(1+x2) e) *2snV 

+(-40-10x2+21e)^sn>+20AT6snV]+(3/16)(WJD)<{(l+A:2)A:2 

-(2+13x2+2x4)x2snV + 15(l + x2)x4snV-15xesnV}) (#/D)3 (18) 

These expressions are exactly the same as the Isobe 
theory. 

(5) Relation with the Fenton theory 
Fenton derived a cnoidal wave theory expressed with 

relative wave height H/h^, in which h^ is the water depth 
under the trough, 

If LQ and L3 are expanded into the power series of 
H/h-t; and h-^/D relation is taken into account, LQ , L3 and 
h^/D are expressed as a function of H/h^. 

U = (lAr2)(^,)+(l/4^)(-6 + A:2+8e)(fl/fe)2+(l/8A:6){3(3 + A:2) 

-8(2+x2)e+8e2}(#/fc)3 <19) 

U = -(l/2Ar2)(x2+e)(i//A()+(l/40^){2(2+3Ar2+7^)-5(2-5^2)e 

+15e2}(H/ht)
2 -(1/2800AT

6
){24+279x2+307*'+710*6+7(53 - 153x2 

+253x4)e -1050(1 -2x2)e2+875esKH/ht)
s (2°) 

htlD = l+(l/x2Xl-x2-€0(#/W+(l/4x4){2(l-3x2+2x4) 

-(6-7x2)e+4e2}(tf//?OMl/400x6){-66+399x2-733x4+400x6 

+2(233-683x2+458x4)e -200(4-5*2)e2+400e3}(////?()
3 <21) 

Substitution of LQ, L3, and h^/D relations into the 
wave characteristics of the Chappelear theory yields the 
following expressions, which agree exactly with those in 
the Fenton theory again. 

S/JgkT = l + (l/2*2)(l-2e)(H//?()+(l/120^){-(13 + 2^2+3^) 

+10(4+x2)e}(tf/M2+(l/16800x6){-2888+5697x2-2689x4 + 780x6 

+4(392-1442x2 + 917*4)e}(#/A«)3 (22) 
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ul/gfu = H-(l/2Ar2)(-l + 2Ar2-2x2cn2w)(fl7A<) + (l/40Ar4){3(3-8^2 

+ 3x4) + 10(4-5x2)*2 cn27X+40*4 cn47X}(H/ht)
2+(3/4x2){l-x2 

+2(-l + 2x2) cn27X-3x2 cn1z*}G'//OW/^H(l/1120x<i){-88+167;r2 

+ 181x4-200x6+4(-112+378*2-133x4)x2cn2}7 
+ 16(-119+133^Vcn1ra-1344^6cn6ra;}(^//?()

3+(3/8^){-l+^ 

+ 2(l-7x2+4x<)cn2rX + (19-29x2)x2cni7X+20x,cn67xKy/h,)2(H/htf 

+ (3/16x4){l-3x2+2x< +(-2 + 17x2-nxt) cn2rx 

+ 15(~l+2x2)x2 c^rx-lSx* cnerxKy/k,y(H/h,y (23) 

(6) Summary of the considera 
In short, substitution o 
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the existing cnoidal wave theories. 

Lo.Ls expres. 
Chappelear(1962) 

3rd order 

u ,C, 77 

(3rd def.) 

La expres. 
i et al. 
(1992) 

U or X   expres. 
Tsuchiya & Yasuda 

(1985) 
Yamaguchi et al. 

(1992) 
1 

H/D expres. 
Tsuchiya & Yasuda 

(1985) 
Yamaguch et al. 

(1992) 

(1st def.) 

r— 
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Fig-. 1 Interrelation of cnoidal wave solutions. 
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3. Numerical Considerations 

Fig.2 shows the vertical 
distributions of maximum hori- 
zontal water particle velocity 
uc//gD based on the cnoidal 
wave theories using the first 
definition with two parameters, 
one parameter and H/D parameter 
indicated by c-3-1, c-3-lM and 
c-3-lL respectively, in which 
T is the wave period.  The the- 
ory with H/D parameter gives a 
more and more unrealistic dis- 
tribution in the case of larger 
H/D values, and the theory with 
LQ parameter produces similar 
results to that with two para- 
meters.  But integral proper- 
ties of the theory with two 
parameters do not show favor- 
able behavior in the case of 
smaller T/g/D.  Therefore, use 
of the cnoidal wave theory with 
with LQ parameter is recom- 
mended for its practical appli- 
cation. 

0.5 

Q 

-0.5 

y,. /< 
* 2 K /' !/ // \ 

-5- 
1 

II // II •/ 0/H=l.5 
1 / / ' / 
\ '   / / 

/ / / f \ / TV9/D-20 
cnoidal wave 

1st del 
/ 

A 
\ ..._L_ 1 \ — c-3-1 M 

— c-3-1 
 C-3-/L 

1      1      1 
0.2 0.4   0.6 0.8 

Fig. 2 Vertical distribu- 
tions of maximum 
horizontal water 
particle velocity 
based on cnoidal 
wave theories with 
different parame- 
ters . 

Examples of the comparison between computations with 
the experiments for wave celerity and maximum horizontal 
water particle velocity distribution are given in Fig. 3, 
which shows reasonable agreement between them. It is also 

0.5 
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i / •1 
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!! 
D/H'l. 57 
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3 Comparison between experiments and computations 
for wave celerity and vertical distribution of 
maximum horizontal water particle velocity. 
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seen  that  water  particle  velocity becomes   larger  accord- 
ing: to  the  order  of  the  theories with  the   second,   first 
and  third  definitions. 

Lagrangian  velocity  of  a  particular  water  particle   is 
equal   to  Eulerian  velocity  at   the  position  at   time   t 

dxldt = u(x,z),   dz/dt = w(x,z),   x = xo+€(t),   z = zo+^(t) (24) 
where   (XQ,   ZQ)   are   the   initial  horizontal  and vertical 
positions  of  a water  particle,   and   ($,£)   the  horizontal 
and vertical   displacements  of  a water  particle  from  its 
initial  positions.     Substitution  of water  particle  veloc- 
ities  by  cnoidal  wave   theory based  on  the  first   defini- 
tion  and  use  of  a  successive  approximation method  yield 
the   trajectory  of  a water  particle,   in  which  case   the 
initial   conditions  X=XQ  and  Z=ZQ  at  t=0  are   imposed. 
Horizontal   and  vertical   displacements   are  written  respec- 
tively     as 

x'/Tj^D = xjTJW+{ll2K)[ tea-E{a)l U 

+ [(l/6){2(\-X
2)Za3+2(-4 + 2X

2 + 3e)ZE(an+(<i-SX
i-15e 

+ 6x2sn2a)Zea-E(a)3}-(3/4)(y<1/D)2x2£snacnadna3]L<l
2 

+ ((l/600)[20(24-4lAr2 + 17Ar4)M+20{-149 + 169x2-34^ 

+5(52-29x2)e-U5e2}ZE(a)3 +{-256-244*2 + 369*4 

+ 150(-32 + 25x2)e+5625e2}Zea-E(a)l+2W(l-x2)x2sn2aZa3 

+ 200(-4+2x2+3e)x2sn2aZE(a)3+W0(10-nx2-27e 

+6x2sn2a)x2sn2a£ea- E(a)3+600x2snacnadna£ea- E(a)32 

-S(l + x2)x2£snacnadna2 +24x4Zsn3acnadna3] 
+ti/40)(yo/D)2[16(2-3x2 + xi)Za3+32(-l + x2~xi)[:E(cl)3 

-30x2(l-2(l + x2)sn2a+3x2sn'a}Zea- E(a)3 

+ 30xAsnaocnaodnao Zsn2a3 + (- 44 + 61x2 + WSe)x2 ZsnacnadnaJ 

- 60x*sn2«, CsnacnadncQ - 18x* Csn3ffcn<zdna,j| ] 

+ (3/16)(y0/Dy{-(l + x2)x2Zsnacnadna3 + 3xiZ.sn'acnadnal})Lo3]        ( 25) 

z'/T/^D = zc/T^D-(3/2Kyf3U)(yo/D)x2 [(l/2)Csn2«3^o2 

-(l/8)[2(-4+3^2 + 7e-2Ar2sn2tfo)Csn2ff]~8snffcna'dnQ'CeQ' 

-E(a)3 +(yo/D)2{-2(l + x2)£sn2a3 +3x2Zsn<a3}]U 

+ [(l/240)[80(l-A-2)sn^cnadnffM+80(4-2Ar2 

-3e)snacnadna£E(a)3+40(10-Ux2-27e+6x2sn2a 

+ 6x2sn2a0)snacnadna £ea - E(a)3 +120{1 - 2(1 + x2)sn2a 

+ 3z2sn<ff}[:eff-£(ffD2 + {548-704Ar2 + 213x''+10(-200 + 133x2)e 

+ 1665e2}Csn2ff3+60^2snW6-5Ar2-lle + 2^2sn2«o)Csn2ffl 

~24x2{l + x2)ZsnAa3+24xiZsn6a3)+(m6)(yo/D)2[&(l + x2 
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~3x2sn2a)snacnadnaZea- E(a)3 +2{4-8x2-3xi 

-7(l + x2)e}£sn2a3+2x%n2a<,(S+&x:,-3x2sn2ao)Z.sn2a3 

+3x2(7x2+7e-6x2sn2ao)£sn4a3-^iZsnea2 

+ 12x2snffocna>dna, Zsnacnadnal ] + (3/160)(y0/D)4{(2+13*2 

+2x,)Csn2al-15x2(l + x2)Zsn4al+15x,Zsn<ia3})U] (26) 

where     £f(a)2 = /(«)-/(«,),    a = 2K(x0~ct)/L 

ao = 2iTxo/L, J,0/D = 1+zo/D, (2Y} 

and  E(a)   is   the  Jacobian  E  function  defined  as 

dn2 ada E(a) = l" (28) 
Mass transport velocity is calculated as time-aver- 

aged residual displacement of a water particle, and the 
distributions based on the solutions using three defini- 
tions are given respectively as 

t/m'/^^=(l/3){-l+^^-2(2-^)e-3e
2}Lo^+[(l/30){-24+41^ 

-17x4 + (149-169x2+34x4)e + 5(-52+29x2)e2+135e3} 

+ (l/3){-l + x2+2(2-*2)e-3e2}*2sn2g, 

+ (2/5)(W£)2{-2 + 3*2-*4+2(l--*2+x4)e}]L(,3 (29) 

Vm
l/JgD = -(1/3737^) Lo4(ya/D)x2snaocnaodna0[-l + x2 

+2(2-x2)e-3e2} (30) 

UJ'/fgD = (2/l5)U3{\-3(yo/D)2}{2~3x2 + x4 + 2(-). + x2-~xi)e} (31) 

Vn"l-/gD=0 (32) 

UnmIJJD = (l/2){-l + x2+2(2-x2)e-3e2}Lo2+[(l/60){-66 

+ 109x2-43x4+(421-461x2 + 86x4)e+5(-146+79x2)e2+375e3} 

+(l/3){-l + ^+2(2-*2)e-3e2}x2sn2ao 

+(2/5)(W£)2{-2+3x2-x4+2(l-x2+x4)e}]Lo3 (33) 

Vmm/JgD = ~(3/2y3TDLo4(W£)x2snaocngodnao{-l+x2 

+2(2-*2)e-3e2} (34) 

When the initial conditions such as x=x0 and z=z0 at t=0 
are used, mass transport velocities based on the third 
order solutions of cnoidal waves using the first and 
third definitions depend on the initial horizontal posi- 
tion of a water particle, as denoted by underline.  This 
may be due to the deficiency of the successive approxima- 
tion method as in the case of Stokes wave theory.  Thus, 
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XQ   is set to zero. 

Fig. 4 illustrates the trajectory of a water particle 
and vertical distribution of mass transport velocity 
based on cnoidal wave theories using three definitions. 
None of the theories describe closed orbits, and all of 
them result in mass transport velocity distribution. 

Wave energy 1? and energy flux T nondimensionalized by 
those of the small amplitude wave theory are shown in 
Fig. 5.  Increase of T/gTTJ and decrease of D/H, that is 
to say, increase of wave nonlinearity, give rise to con- 
sistent and favorable reduction of dimensionless integral 
properties. 

Fig. 4 Trajectory of a water particle and vertical dis- 
tribution of mass transport velocity. 

2 D/H 4      6   8 10 2 D/H 4     6   8 10 

Fig. 5 Relation between integral properties and wave 
parameters. 
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4. Limiting Range for Applicability 

A limiting range for the application of cnoidal wave 
theory with a single expansion parameter is investigated 
by comparing wave characteristics and integral properties 
of cnoidal waves with those of Fenton's Fourier approxi- 
mation theory, because the Fourier approximation theory 
gives the almost exact solution to water wave problem on 
a uniform depth. 

Fig. 6 shows two examples of the comparison for ver- 
tical distribution of maximum horizontal water particle 
velocity and dimensionless energy flux, which shows that 
decrease of D/H and T/g7T3 gives rise to greater discre- 
pancy between both theoretical results. 

0.5 

-0.5 

F-I5-I- 
D/H-/ 5 

3 

,2 // // ,--''l.25 

5 

0\ /// 
/''//' /"~~~c~ 3-1M 

i 
'| 

T-/57 5=20 

| 1 
0   0.2     0.4     0.6     0.8       I 

UC/TIQD 

0.2 

I 2 o/H 4     6 8 

Fig. 6 Comparison between vertical distribution of 
maximum horizontal water particle velocity and 
dimensionless energy flux by cnoidal wave theory 
and those by Fourier approximation theory. 

Fig. 7 illustrates a limiting range of wave param- 
eters for the application of cnoidal wave theory, in 
which errors for wave celerity, horizontal water particle 
velocity and integral properties of cnoidal wave theory 
are less than 0.5 X,   5 %  and 5 % respectively. In the 
figures, notations UQ, U5 and u^, are the maximum horizon- 
tal water particle velocities at the still water level, 
middle point between still water level and bottom, and 
bottom, E^ and Ep the kinetic and potential energies, S^i 
and S22 the principal components of radiation stress and 
u)-,^ is the time mean of squared horizontal water particle 
velocity at the bottom.  The range for individual wave 
characteristics and for integral property are different 
from each other.  But roughly speaking, a limiting range 
of H/D for the third order solution is around 2. 
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Fig. 7 Limiting- range for application of the third order 
solution of cnoidal wave theory. 

5. Conclusions 

The main results are summarized as follows; 

1) The interrelation among all of the existing cnoidal 
wave theories with the third order approximation is 
analytically established, in which case they can be 
derived from the Chappelear solution expressed with 
two expansion parameters by identifying the defini- 
tion for wave celerity to be used in the theory and 
changing the expansion parameters in the expressions 
of wave characteristics and integral properties. 

2) Based on the numerical computation of the wave charac- 
teristics and integral properties and the comparison 
with the experiments, use of the cnoidal wave theory 
expressed with a single parameter LQ was recommended 
from a practical viewpoint. 

3) The figures describing a limiting range of wave pa- 
rameters for the application of the cnoidal wave theo- 
ry expressed with a single expansion parameter are 
provided by comparing wave characteristics and inte- 
gral properties of the theory with those of the 
Fourier approximation theory. 
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