
CHAPTER 51 

A stream function solution for waves on a strongly 
sheared current. 

Christopher Swan1 

Abstract. 

A perturbation analysis is presented in which a series 
of small amplitude progressive gravity waves interact with 
a strongly sheared current. The solution, which is extended 
to a second order of wave steepness, shows that if the time 
averaged vorticity distribution varies with depth the wave 
motion becomes rotational. An additional wave component, 
expressed in terms of the first harmonic, is identified at 
a second order of wave steepness. This does not arise within 
an irrotational solution and is quite distinct from the 
Doppler shift associated with the surface current. Explicit 
solutions are given for the dispersion equation and the wave 
induced kinematics. These are found to be very different 
from the existing irrotational solutions, and suggest that 
the non-linear wave-current interaction terms can become 
very important if the current profile is strongly sheared in 
the vicinity of the water surface. In such cases the 
underlying velocity field should not be predicted by an 
irrotational solution based upon an "equivalent" uniform 
current. 

1- Introduction. 

The combination of waves and currents is an important 
feature of most marine environments. The present paper 
considers the fluid flow resulting from such an interaction 
once it has achieved a state of equilibrium. It will not 
consider the initial generation of waves on a strongly 
sheared current; nor will it consider the propagation of 
waves onto a strongly sheared current. The initial transfer 
of energy between the various components of the flow field, 
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and the resulting change in the wave height, forms part of 
a transient problem which has already been considered by a 
number of authors. These include Longuet-Higgins and Stewart 
(1960, 1961), Bretherton and Garrett (1968), and Brink-Kjaer 
and Jonsson (1975). A full discussion of these matters is 
given in the review articles by Peregrine (1976) and Jonsson 
(1990). 

It is well known that the equilibrium conditions 
associated with the interaction of waves and currents are 
strongly dependent upon the vertical distribution of the 
current velocity. In many practical cases it may be assumed 
that the current profile is approximately uniform with 
depth. Important examples of this type of behaviour are the 
large scale ocean currents, and the majority of tidal flows. 
Under these conditions, the wave motion remains irrotational 
and, in effect, the only interaction occurs within the 
associated dispersion equation. At a second order of wave 
steepness the dispersion equation for waves propagating on 
a uniform current (U=Uo) is given by:- 

c~[&ta*Why\m+U0 (l) 
k    k 

where c is the wave celerity, h is the water depth and g is 
the gravitational constant. The wave number (k) and the wave 
frequency (a) are defined in the usual way so that k=2it/A 
and a=2Tc/T, where A. is the wave length and T is the wave 
period. This solution is often referred to as a "Doppler 
shifted solution" since it describes the wave form 
propagating on the surface current. 

A second example which has been widely considered is 
that of waves on a linear shear current, or one in which the 
current velocity varies linearly with depth. Tsao (1959) 
considered this case and showed that the wave motion, or the 
oscillatory component of the flow field, will remain 
irrotational provided the vorticity is constant throughout 
the water depth. In this case the stream function ($) can no 
longer be expressed in the form of a solution to Laplace's 
equation as would be the case in a classical Stokes' 
expansion (1847). The governing equation is thus expressed 
in the form of a Poisson equation:- 

V>-Q„ (2) 



686 COASTAL ENGINEERING 1992 

where Qo is the constant vorticity or the gradient of the 
linear shear current. Although the oscillatory motion 
remains irrotational, it is different from that which would 
be predicted in the absence of a current. If the current is 
assumed to be of a similar magnitude to the first order wave 
motion, an additional oscillatory term arises at a second 
order of wave steepness (0.(a2k2)). Kishida and Sobey (1988) 
identified this term as:- 

*«- •'*^ -*-« sinh(kh) 

where a is the wave amplitude (or half the wave height, H) 
and (x,z) are the Cartesian co-ordinates described below. 

In many practical cases neither the current velocity or 
the vorticity distribution are uniform. For example, in the 
absence of significant vertical mixing, a wind driven 
current decays exponentially with depth. This creates a 
strongly sheared current with a concentration of vorticity 
near the water surface. To describe an interaction of this 
type has hitherto required a complex numerical model similar 
to that proposed by Chaplin (1989). The present paper will 
consider this case and presents a new analytical solution 
which is simple to use, and which provides a first 
approximation to the non-linear wave-current interaction 
which arises in the presence of a strongly sheared current 
profile. 

2. Theory. 

The new solution will take the form of a perturbation 
expansion in which a series of two-dimensional monochromatic 
waves, propagating in water of constant depth, interact with 
a strongly sheared current. To simplify the non-linear 
boundary conditions which must be applied at the water 
surface, the analysis will be conducted within an orthogonal 
curvi-linear co-ordinate system. 

The Cartesian co-ordinates shown on figure la translate 
with the phase velocity (c) to provide a steady (d/dt=0) 
frame of reference. These axes are mapped onto the curvi- 
linear co-ordinates shown on figure lb. To achieve this a 
sequence of transformations must be applied so that at each 
order of the perturbation (see below) ti=0 defines the free 
surface and T)=-h the position of the impermeable bottom 
boundary. At a first order of approximation these 
transformations are similar to those applied by Benjamin 
(1959). The general form of the transformations are given 
by: - 
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N 

* - * - £V«^-«> - * 
N 

£l   sinli(n*ft) 

(4) 

where the subscript defines the order of the terms, and the 
unknown constants (An, Bn), are dependent upon the water 
surface elevation (£)• Since this cannot be known a priori 
an iterative approach is adopted in which an initial 
estimate of the surface profile is made, the co-ordinates 
are transformed, and a solution obtained as indicated below. 
This solution is then used in conjunction with the boundary- 
conditions to define, where necessary, an appropriate 
modification of the surface elevation. In this way a unique 
solution can be identified which satisfies both the 
governing equation and the boundary conditions. 
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Figure 1. Co-ordinate arrangements. 

To achieve this iterative approach the irrotational 
solution proposed by Stokes (1847) was used to provide an 
initial estimate of the surface elevation. If C is measured 
relative to the still water level (z=0), then the required 
second order expression is given by:- 

C - acm(9)+a2kcash(kh) P^^^W*) ^!*_ 
4stnh3(&t) 2sinh(2#i) 

(5) 

where $ is the phase angle (kx-at). It is important to note 
that the surface elevation alone is being adopted as an 
initial estimate. No assumptions are made about the nature 
of the associated dispersion equation, and the flow is not 
assumed to be irrotational. 
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The transformations given above (4) are orthogonal, and 
the  Jaoobian J  is defined by: 

j.^Sl (6) 

Within the (5,tj) co-ordinates the two dimensional 
vorticity equation for flow in an inviscid fluid is given 
by: 

acuf^t)   0 (7) 

where the stream function ($) is defined so that the total 
velocity components in the $ and i\  directions are:- 

(U+u)rJW&-      ,     «n~JlP^ (8) 

In accordance with the arguments originally outlined by 
Stokes (1847) an exact solution of a two dimensional wave 
train does not exist. Consequently, a perturbation expansion 
must be employed in which the stream function (if), the 
surface elevation (C)> and the Jacobian (J), are expressed 
in terms of a small expansion parameter (e): 

*-i|»0+et1+e
2i|»2+e

3i|r3+e4iJr4+   

C-C0+eCi+eVeVe4C4+  (9) 

J-J0+eJr
1+e2J2+e3/3+e474+   

where the subscript again denotes the order of the term 
involved. In the present solution the wave steepness (ak) is 
adopted as an appropriate expansion parameter, and the co- 
ordinate arrangement shown on figure lb defines the 
following "zero order" terms: 

to—"1 » V1 ' to-0 (10) 

Substituting (9) and (10) into the governing vorticity 
equation and collecting powers of « gives the required 
expressions of the vorticity equation at successive steps in 
the perturbation: 
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c—(V**,) - 0 

(ii) 

**>•*%&-%*» 

Before discussing the boundary conditions we must 
define the characteristics of the current profile. Firstly, 
it should be noted that if the magnitude of the current 
velocity is close to the phase velocity (c), the vorticity 
equations (11) are indeterminate. Fortunately, this 
situation seldom arises within either a coastal or an ocean 
environment. Current velocities are typically much smaller 
than the phase velocity, and are generally more closely 
related to the magnitude of the first order wave motion 
(U=0.(ak)). This assumption is adopted within the present 
formulation. 
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Figure 2.  A strongly sheared current profile. 

To ensure that an appropriate range of current profiles 
can be incorporated within the present solution, a 
polynomial representation is adopted to describe a current 
profile within the region 0£:ti>-mh where m is a constant 
within the range (O^mSl). Hence: 

U-(P+2Qr\ +3Ri\2+4Si\3) d (r\ +mh) (12) 
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Where  8s(n+mh)   is the heavyside  step function defined by: 

a,(T)+J»*)-l      if     (ti+ntft) * 0 
(13) 

&s(t\+mh)-Q      if     (i\+mh) < 0 

Figure 2 compares the current profile defined in (12) with 
a wind driven profile based on the lamina flow solution 
proposed by Lamb (1932). 

The vorticity equations (11) must be solved within the 
confines of the following boundary conditions: 

(a) If the bottom boundary is assumed to be both horizontal 
and impermeable, the vertical velocity at the bed must be 
zero: 

_jwii.0   m   i,._A (14) 

(b) Since the water surface is a streamline the kinematic 
condition requires the velocity normal to the surface to be 
zero: 

-jiflit-O on     T|-0 (15) 

(c) The dynamic free surface boundary condition further 
requires the pressure (p) acting on the water surface to be 
constant.' In general orthogonal co-ordinates the equations 
of motion are given by:- 

•^+^V(H*)-axXii - --V(p)+£ (16) 
dt   2 p 

where the under-bar denotes a vector quantity, a is the 
vorticity distribution, and F is a body force. Taking the 
first component of (16) and applying the kinematic condition 
(15) gives the required dynamic condition: 

0 on  t|«0  (17) 



STREAM FUNCTION SOLUTION 691 

where Fj is the resolved component of the body force per 
unit mass in the 5 direction. If g is the gravitational 
constant, and 9 is the angle separating the z and tj 
directions (figure 1), we obtain: 

F?~ gsan(Q) (18) 

(d) Finally the fluid motion must be continuous throughout, 
the entire water depth. In the case of (m<l) the flow may be 
divided into two distinct regions which are characterised by 
the presence (Oiqa-mh), or absence (-mh>q>-h), of the 
current profile. If the governing equation (7) is to be 
consistent across this Interface (n=-tnh) the time averaged 
vorticity must be zero at the lower edge of the current 
profile: 

Furthermore, the value of the stream function and the 
velocity components must also be continuous across this 
region. If (T|-—»-mh) represents the limit taken in the 
negative t| direction (from above) and (n+-»-mh) represents 
the limit taken in the positive r\ direction (from below) the 
final boundary conditions are given by: 

3. Results and discussion. 

The perturbation analysis is extended to a second order 
of wave steepness. Since the current velocity is assumed to 
be of order ak, the solution will provide a first 
approximation to the wave-current interaction. The resulting 
stream function is given by: 
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% - -C1\ 

•2 - t^Qli+U^*49n**^F^^Ua¥K) 6sin+mk)  {21) 

+aF/jsinA*<fc+tj)co8(*5) 6/-tj-mft) 

Where the heavyside function (5S) is defined in (13) and the 
terms Fa, Fb, and Fc are constants for a given wave-current 
interaction (figure 3). 
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Figure 3. The constant coefficients (Fa, Fb, Fc). 
(Defined for a cubic shear current). 

The three terms within this series solution can be 
identified in the following way. The zero order term (fo), 
which arises due to the translation of the co-ordinate axes, 
may be used in conjunction with the Jacobian (J) to define 
the irrotational velocity components within a classical 
Stokes expansion. The first order term ($i) provides a 
description of the current profile in a steady frame of 
reference, and the second order term (t|t2) defines the 
additional terms associated with the wave-current 
interaction. 
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To complete the required solution a dispersion equation 
describing the combined wave-current motion is required. At 
a second order of wave steepness the phase velocity measured 
relative to a stationary observer is given by:- 

- 2. .{& 
k     U 

1 

1        *     2k2 

(22) 

_ 3S tanh(A&) +   **« 
k3 2 cosh2***) 

where P, Q, R and S are the constants used to define the 
current profile (12). Assessing these terms at the water 
surface (n=0) we obtain: 

'   2!UJn„0 

S-1 (d3u\ 
(23) 

l*i2Lo        4! ^3Jn., 

The effect of the surface vorticity (ffls) is considered 
in figure 4. Convention dictates that a vorticity 
distribution is positive if it causes an anti-clockwise 
rotation of the fluid particles («»=-dU/dit). Unfortunately, 
this definition results in a positively sheared current 
(dU/dq>0) having negative vorticity. To avoid confusion the 
horizontal abscissa on figure 4 is expressed in terms of 
(-a>e) so that an increase in the positive x-direction 
indicates an increase in the positive shear. 

Figure 4 considers a number of realistic current 
profiles in which a "favourable" current (Ue>0) has positive 
shear (-d»s>0) and an "adverse" current (Us<0) has negative 
shear (~<im<0). In all cases the vorticity distribution acts 
to reduce the effect of the Doppler shift associated with 
the surface current (UB). For example, if a series of waves 
propagate onto a "favourable" current the individual waves 
will be "stretched" thereby producing a reduction in the 
wave number. If however, the current profile is sheared 
(dU/dn>0) then the apparent change in the wave number is 
much reduced. Indeed, figure 4 indicates that a highly 
sheared current profile can entirely negate the wave length 
changes associated with the Doppler shift. 
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Figure 4.  The wave number (k). 

This reduction in the apparent Doppler shift has led 
some authors to suggest that the interaction with a strongly- 
sheared current can be described by an "equivalent" uniform 
current (U(n)=Ue). Hedges and Lee (1992) define this 
"equivalent" uniform current as that which produces the same 
wave number (k) as the actual depth varying current for a 
particular wave period, wave height, and water depth. This 
approach is considered in figures 5a-5b which respectively 
concern the interaction with a positively sheared 
"favourable" current and a negatively sheared "adverse" 
current. In each case the first figure provides a 
description of the current profile (U), and the second 
figure describes the oscillatory velocity occurring beneath 
the wave crest (u). Four different solutions of the wave 
induced velocity are presented: the first is a waves only 
solution which neglects the effect of the current profile; 
the second assumes that the surface current exists uniformly 
with depth (U(tj)=Us); the third is based on the present 
solution for waves on a strongly sheared current, and the 
fourth is based on an "equivalent" uniform current. 

Figures 5a and 5b show that the wave kinematics 
resulting from the interaction with a strongly sheared 
current are dependent upon two separate effects. The first 
corresponds to a change in the dispersive characteristics of 
the wave form given in equation (22), and the second is 
associated with the rotational wave components identified in 
equation (21). The dispersive characteristics are found to 
be dependent upon the magnitude of the surface current and 
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the time averaged vorticity distribution. In consequence the 
actual wave number falls between the values predicted by the 
waves only solution and the uniform current solution which 
is based upon the magnitude of the surface current (Ue). 

Current velocity.  Wave velocity 

U   (m/s). u   (m/s). 

Figure   5a.      Interaction with  a   "favourable"   current. 
(T=5s,   h=10m,   H=2m). 

Current   velocity.     Wave   velocity. 

No   current.1 

(U=0). 

_-^_1     Q 

U   (m/s) 
0.5 1.0 
u   (m/s). 

Equivalent 
uniform 
current. 
(U=Ue). 

Sheared 
current. 
(u=u(ii)). 
• • 11 • • i > * t • 11 

1.5 

Figure 5b.  Interaction with an "adverse" current. 
(T=5e, h=10m, H=2m). 
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The "equivalent" uniform current will, by definition, 
correctly model the dispersive characteristics of the 
combined wave-current motion. However, this alone is not 
sufficient to describe the wave induced flow field in the 
presence of a strongly sheared current. Figures 5a and 5b 
clearly indicate that the wave kinematics are directly 
dependent upon the vorticity distribution. In the upper 
region of the flow field (OSt^^-mh), where the current 
profile exists, figure 5a shows that a positively sheared 
"favourable" current produces a significant increase in the 
amplitude of the oscillatory velocity occurring near the 
water surface. In figure 5b a negatively sheared "adverse" 
current reduces the oscillatory velocity in this region. 
These changes are associated with the rotational wave 
component identified in equation (21). They are not related 
to the effective Doppler shift, and cannot therefore be 
predicted by an irrotatlonal solution based on an 
"equivalent" uniform current. 

It is interesting to note that even in the lower layers 
of the flow field (-mhitji-h) where no current profile 
exists, and consequently the flow must be irrotatlonal, the 
solution based upon an "equivalent" uniform current again 
provides a poor representation of the wave kinematics. This 
arises because of the continuity conditions (20) which must 
be applied at the lower edge of the current profile (T|=-mh). 
This suggests that a wave-current interaction involving a 
non-uniform vorticity distribution will effect the entire 
wave field, even if, as in the present case, the vorticity 
profile is contained within a relatively narrow layer near 
the water surface. 

4. Conclusions. 

An analytical solution has been presented to describe 
a series of two dimensional progressive gravity waves 
propagating on a strongly sheared current. The solution has 
been extended to a second order of wave steepness and shows 
that the wave motion becomes rotational if the vorticity 
distribution varies with depth. 

The dispersion equation describing the combined wave- 
current motion is found to contain additional first order 
terms which are related to the vorticity distribution. These 
terms have a significant effect upon the predicted wave 
number, and in the case of a realistic current profile lead 
to a reduction in the apparent Doppler shift. 

The oscillatory velocities associated with the wave 
motion are also shown to be very different from the existing 
irrotatlonal solutions. In addition to the wave number- 
effects discussed above, a favourable current with positive 
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shear produces a significant increase in the amplitude of 
the oscillatory motion, while an adverse current with 
negative shear reduces the amplitude of the oscillatory 
motion. These changes are associated with a rotational wave 
component which arises at a second order of wave steepness. 
This additional component is directly related to the 
vorticity distribution and does not therefore arise within 
a classical Stokes' expansion. As a result, the wave motion 
generated in the presence of a strongly sheared current 
cannot be predicted by an irrotational solution, even if 
this includes the effect of an "equivalent" uniform current. 
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