
CHAPTER 50 

INTERACTION of NONLINEAR WAVE and CURRENT 

1 2 3 
S. Supharatid , H. Tanaka, and N. Shuto 

Abstract 

A nonlinear wave-current model is developed to obtain the velocity and 
shear stress. The model employing an "empirical velocity deviation" which 
introduces the modification of the time-mean velocity caused by waves is 
proposed. With an application of a time-invarient linear eddy viscosity and 
making use of the truncated Fourier series, a boundaiy value problem is 
formulated and is solved numerically. Comparisons among many cases of 
measured and predicted results show reasonable agreements. 

1 Introduction 

Knowledge on the combined wave and current in the boundaiy layer 
flows has been investigated theoretically and experimentally by many 
reasearchers. However, the modifications of the fundamental characteristics 
of the waves and current resulted from their interactions have been rarely 
mentioned. 

At present, there are some numerical models which incoporate currents 
into their formulations. Dahymple(1974) proposed a numerical perturbation 
while Teles da Silva and Peregrine(1988) used a boundaiy integral method 
to simulate the flow fields under waves with a linear shear current. Kishida 
and Sobey(1988) modified the Stokes theory to include the effect of a linear 
shear current. These wave-current model are still needed to be verified with 
experimental data or field measurements. 

Recently, Tanaka(1989) extended his one-layer model to account for the 
nonlinear wave by a modifying Dean's stream function.(Dean, 1965) This 
model, however, does not succeed to predict the time-mean velocity near 
the water surface. 
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The present work was made by the incorporation of a modified current 
profile instead of the conventional log-current profile. The usual boundary 
value problem, with the application of the eddy viscosity approach and 
Fourier wave theory, is formulated in term of the stream function. The 
predicted velocity and bottom shear stress are compared with auther's 
experimental data. 

2 Boundary value problem 

Prior to the formulation, the following assumptions should be made. 
1) Waves propagate without change in form. 
2) Wave height is known. 
3) Current is uniform in the flow direction. 
4) Flow is incompressible and fully turbulent. 
Consider a two-dimensional periodic wave train propagating on a steady 

uniform current over a horizontal bottomree Fig. 1). Equation of continuity 
is 

3u 3w 
— + — =  o m 

3x 3z w 

where (u, w) are ( 3*/3z, -3<p/9x) for the stream function 
The boundary conditions to be satisfied in a moving reference frame with 

the wave celerity, c are as follows: 
Non-slip condition at the bottom, 

dip 
— =  0,   z  =  zo (2) 
3z 

No flow through the bottom, 

tHx.z)   =  0,   z  =  zo (3) 

No flow through the water surface(KFSBC), 

ip(x.z)     =  Q...z  =  r?(x) (4) 

Dynamic free surface boundary condition(DFSBC), 
13* 13* 
 ( )2    +    ( —)2    +   gZ   =   R,    z   =   7?(X) (5) 

2     3x 2     3z 

Periodic lateral boundary condition with respect to wave length, L 

*(x+L,z)   =  <f>(x,z) /gs 



674 COASTAL ENGINEERING 1992 

The mass conservation requires the invarient mean water level, on taking 
the x-co-ordinate with the origin at the wave crest, 

!  vdx - D (7) 

The wave height, H is assumed known and is defined as the vertical 
difference between wave crest and wave trough. 

17(0)   -   r?(L/2)   =   H (8) 

where   v = water surface elevation measured from the bottom 
Q, R = constants 
D = water depth 
zo = bottom roughness height 
H, L = wave height and wave length. 

3 Stream function formulation 

The stream function for a combined wave-current motion is expressed as 

tp   =   tpc    +   *w i R    +   *W R /Q\ 

where      fc .   *» iR •   anci *u«    correspond to the stream functions for a 
steady current, irrotation(WIR) and rotation(WR) waves respectively. 

3.1 Stream function for a steady current 
The stream function for a steady current, <pc is obtained from the 

normal momentum equation with the use of a titne-invarient linear eddy 
viscosity, Tc /p = KU. U C Z8UC /3Z. However, with the introduction of an 
experimentally determined "velocity deviation, Au01" as the water surface 
boundary condition, the final solution can be written in term of the time- 
mean velocity, uc as 

u-c |u- c |         z                       Z-Zo 
Uo   .=.  ln — +  AUcd     (10) 

itu-»t za D-zo 

where u- 0    = friction velocity for the steady current 
u. u o  = friction velocity for the combined flow 
"        =0.41. 
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Symbols + and - are for waves with the following and opposing currents, 
respectively. Here, Auo J (see Fig. 2) is expressed empirically in term of the 
relative strength of waves to current, Uo/Uc by 

Auc <J 1 Uo 
 =  (11) 
lUc I 5  Uo 

where Uo is the velocity amplitude at the bottom of the wave-induced 
motion(linear theory). Uc is the depth-averaged current velocity,, symbol | | 
means the absolute value. 

It is clearly seen from Eq. (10) that the neglection of the second term on 
the right hand side reduces to a familiar log-current profile similar to that of 

the steady current alone. 
3.2 Stream function for waves 
Equations (12) and (13) represent the stream function for irrotational and 

rotational waves, respectively. For j = 1, they reduce to the fundamental 
forms of the first-order solution obtained by Fenton(1980) and Grant & 
Madsen(1979). 

-n    Bj sinh<jk(z-zo ) }cos( jkx) 
tpu i R      =     Bo(z-zo)   +  2 (12) 

J=l cosh(jkD) 

Kok n                Bj 
*UR      =       Z         Fj (13) 

6)   j=l       RjDCOSh(jkD) 

where Bo, Bl, Bn = unknown constants 
Ko      = KU« tCji( = Wave number, « = Angular frequency of wave 
Rjo      = 2(   Ker2£jo   +   Kei2£j0)     £j „   =   2( juza /KB )' ' 2 

«j      =   2(Juz/KB)
,,a 

Fj      =   £j    (Ker'fjKelfjB-Kel'^jKer^jB )cos(jkx) 

-   Sj    (Ker'$jKer$jo+Kei'$jKelSj0 )sln(jkx) 

+   $JB (Kei'£j0Ker£jo-Ker'£j!!KeUjo ) cos (jkx) 

+   $JO(Kei'$joKei$jB+Ker'$jaKer$jB)sln(jkx). 

Kei, Ker = Kelvin functions of zero order. 

Subscript "j" denotes the order of the finite Fourier expansions. Subscript 
"o" denotes values evaluated at the bottom except Bo which is one of 
unknown constants, Bj. Symbol " ' " means the 1st derivative of Ker and 
Kei with respect to $ . 
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4 Solution method 

It is convenient to make variables dimensionless with respect to the mean 
water depth, D, and gravitational acceleration, g as shown Table 1. 

The stream functions introduced above satisfy the equation of continuity, 
non-slip condition at the bottom, no vertical velocity at the bottom, and the 
periodicity with the wave length, L. Therefore, equations to be solved are 
kinematic and dynamic conditions at the free surface Eqs. (4) and (5), 
invarient condition for the mean water level Eq. (7), and the wave height 
Eq.(8). 

Strictly speaking, the dynamic boundary condition at the free surface(Eq. 
(5)) is only applicable for an inviscid flow but not to the present case. This 
is because the flow under consideration inevitably yields the energy 
dissipation casued by viscous and turbulent motions. However, most of the 
energy dissipation occurs within the veiy thin region near the bottom, and 
outside this region the flow nearly behaves like an inviscid flow, making 
Eq. (5) applicable to the present case. 

Now, we have (2n+4) equations for (2n+7) unknowns(u-«o, Bo, c, k, Q, 
R, rjj(j-0, n), and Bj(j=0, n). Therefore, three more equations are introduced 
as follows. 

The value of u*wc has to be solved by iteration on an assumption of 
constant stress layer approximation near the bottom, i.e. 

32<P   | 
T*c      =     pu2.-o      =     pKozo   —- (14) 

Sz^   'z=za 

where Tuc= maximum bottom shear stress for the combined flow. 
The first definition of wave celerity, c is related to the time-mean 

velocity, u and the Eulerian velocity, UE as 

Ue     =    c  + u (15) 

where - 1    L  3# 
u  =   j   dx  =  Bo   +   3<|>0/3z /16x 

L  0     3z K    J 

The z-dependent terms in Eq. (15) with Eq. (16) inserted should be 
balanced with each oilier. This yields 

-Bo (17) 
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Now, the problem formulation provides (2n+7) non-linear equations for 
(2n+7) unknowns. The solutions are obtained by using the Newton- 
Raphson method. The solution flowchart is shown in Fig. 3 

5 Results. 

5.1 Time-mean velocity over a rough bed 
The computed results are compared with the measurements conducted by 

authers in term of the time-mean velocity in Fig. 4. Modifications caused by 
waves are dependent on the flow direction, i.e. decrease and increase of the 
time-mean velocity near the free surface for waves with following and 
opposing currents. Introducing the "velocity deviation", Auc i results in 
relatively good agreement above a height of about 100 mm. 

In fact, discrepancies below this height may be caused by violent 
generation and transportation of vortices excited by triangular roughnesses 
on the bottom. With the use of the Nikuradse roughness to represent the 
bottom, the present model does not allow to predict such a 3-D 
phenomenon. 

5.2 Ensemble-averaged velocity over a rough bed 
Profiles of the ensemble-averaged velocity at phases of acceleration and 

deceleration are shown in Fig. 5(a)(following flow) and 5(b)(opposing 
flow). Agreements are reasonably well except in the vicinity of the bottom 
and the overshooting zone. However, the height of overshooting is well 
predicted. This near bottom phenomena, in fact, suggests that any model 
employing the closure assumption of a time-invarient eddy viscosity will 
suffer the same effect. 

To improve the solution near the overshooting zone, it is necessaiy to 
adopt more realistic models such as the K-e model (Supharatid et. al., 
1992). This certainly requires a considerably time-consuming computation. 

5.3 Bottom shear stress over a smooth bed 
The bottom shear stress for a smooth bed was measured directly using a 

hot-film sensor. Comparisons with the present theory are made in Fig. 6 for 
both waves with following and opposing currents. In the figure, two thin 
lines denote values of <Tb> + <Tt and <Tb>-crT of the measured data 
where err is the standard deviation. 

Throughout the wave cycle, the model generally gives satisfactory 
agreement, except for the results near the phase of wave trough in the case 
of waves with the opposing current. The distinct phase advance of the 
bottom shear stress is observed and predicted rather well by the model. 
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6 Conclusions 

A model for nonlinear wave interacting with the steady current is 
developd to obtain the velocity as well as the shear stress. The effect of 
waves on the current is introduced in term of the "velocity deviation". The 
time-mean velocity, as a result, is given by a summation of logarithmic and 
linear profiles. 

Good agreements are generally found between the predicted results and 
measured data. Velocity profiles are prdicted rather well except in the 
vicinity of the "overshooting zone" where a time-invarient eddy viscosity 
assumed by the model is not applicable. Time histories of the bottom shear 
stress are also predicted reasonably well. 
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1 : Modified current 

2 : Depth-uniform current 

3 : Linear shear current 

4 : Logarithmic current 

Mean water   level 

Fig. 1 Definition sketch 

VUc 

Fig. 2 Velocity deviation 
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Input wave and curent parameters 
D, H, T, Uc , zo 

Solve dispersion relation 

Initialize u-wc 

Initialize unknown varibles 
(Linear wave theory) 

Finite Fourier approximation 

Solution by Newton-Raphson method 

Fig. 3 Solution Flow chart 
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Table 1 Dimensionless variables 

681 

Dimensional Dimensionless 

variables variables 

X x/D 

z z/D 

y J7/D 

V •*>/(gD3)"2 

Q Q/UD3)"* 

R R/gD 

k kD 

c c/(gD)"2 

u u/(gD)"2 

w w/(gD)"2 

O  t   Current alone 

$> :   Wave-current 

0 10 20 

u(cm/s) 

(a) Following flow 
(D=0.30 m, H=9.4 cm, 

-20 -10 0 

u(cm/s) 
(b) Opposing flow 

(D=0.30 m, H=9.7 cm, 
T=1.3 sec, Uc=11.9 cm/s)       T=1.3 sec, Uc=-14,7 cm/s) 

Fig. 4 Time-mean velocity(rough bed) 
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s(ixm)     Acceleration z(nm)       Deceleration 

0 20 

<u>(ctVs) 

(a) Following flow 
(D=0.30 m, H=9.4 cm, T=1.3 sec, Uc=11.9 cm/s) 

z(ran)     Acceleration z(rrni)       Deceleration 
10% 1      IO'-T 
3T/4f  7X/8 0 T/B 5x/a' 

-40 -20 0 20 -40 -20 0 20 

<u>(ccr/3) <u>(cm/a) 

'(b) Opposing flow 
(D=0.30 m, H=9.7 cm, TM.3 sec, Uc=-14.7 cm/s) 

Fig. 5 Ensemble-averaged horizontal velocity(rough bed) 
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n(cin) 

a. oo 

o.oo 

-a. oo 
<t >(Nitr2) 

wc 

1.50 

0.00 

-1.50 

T/4 
_1  

T/2 
_J  

3T/4 
i 

^s^ 

Measured 

Predicted       _<sSgj#' 

(a) Following flow 
(D=0.30 m, H=9.4 cm, T=1.3 sec, Uc=14.0 cm/s) 

T/4 T/2 3T/4 

n(cm) 

8.00 

0.00 

-8.00 

<T >(ttal2) 
wc 

1 .50 

0.00 

-1.50 

o   Measured 

— Predicted 

e-e-e-o-<ra~ 

(b) Opposing flow 
(D=0.30 m, H=9.5 cm, T=1.3 sec, Uc=-14.9 cm/s) 

Fig. 6 Time series of the bottom shear stress(smoofh bed) 




