
CHAPTER 39 

Modeling the Transformation of Nonlinear Waves 
Passing over a Submerged Dike 

Takumi Ohyama 1 and Kazuo Nadaoka 2 

Abstract 

The decomposition phenomenon of a nonlinear wave train passing over a sub- 

merged dike has been investigated by a previously developed numerical model. 
The model, based on the time-dependent boundary element method, employs an 
effective nonreflective open boundary treatment and can be applied to arbitrary 
nonlinear wave processes. The results for regular wave incidence indicate that 
the higher harmonics generated during passage over the dike are transformed into 
prominent free waves in the trailing side of the dike, revealing the essential mech- 
anism of the observed decomposition phenomenon. The computed wave profiles 
at various locations agree favorably with experimental observations. The trans- 

formation of multicomponent random waves has also been investigated. The 

results show that a substantial amount of wave energy is transferred into higher 

frequency components. The power spectrum of the transmitted wave is found 

to be significantly influenced by the phase differences among the incident com- 
ponents as well as by the incident wave spectrum itself. 

1. Introduction 

The decomposition phenomenon of waves passing over a submerged dike is 
directly related to the variation of wave spectrum and therefore of great impor- 

tance for predictions of coastal wave fields and beach profile formation (Hulsber- 

gen, 1974). This phenomenon is believed to be governed by both the nonlinearity 
and the dispersivity of wave fields. 

The methods of numerical approaches to this phenomenon may be classified 
into the following groups.   The first approach is based on shallow-water wave 
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theories, such as Boussinesq's theory. However, because this approach relies 

on assumptions of both weak nonlinearity and weak dispersivity of wave fields 
it may not be valid especially for prediction in the trailing side of the dike, 
where higher harmonics may arise as deep-water waves. In fact, its applications 
have been restricted to the case of solitary wave evolution (Seabra-Santos et al., 

1987). The incidence of periodic wave trains is taken into account in the sec- 
ond approach, which is based on the second-order Stokes' wave theory (Massel, 

1984). However, because of the limitation of this wave theory, its application 

is restricted to the case of a deeply submerged dike in a weakly nonlinear wave 

field. Thus, the applications of these two approaches have been limited with re- 
spect to incident wave conditions and the submergence of the dike. In addition, 
these approaches cannot directly treat the evolution of random waves composed 

of multiple-frequency components. 
By contrast, the time-dependent boundary element method may apply to 

a wave field of more general conditions, including an arbitrary nonlinear wave 

field, since the free-surface boundary condition can be fully incorporated with- 
out approximations. The lack of efficient open boundary treatments, however, 
has made it impossible to deal with the incidence of continuous wave trains and, 
therefore, in many cases solitary waves have been imposed instead (Cooker et 

al., 1990). Recently, the authors (Ohyama and Nadaoka, 1991) have successfully 
developed an idealized "numerical wave tank" model based on the boundary el- 
ement method. This numerical model employs an effective nonreflective open 
boundary treatment so that it can be applied to arbitrary wave fields including 
nonlinear random waves. The present study investigates the decomposition of 
periodic and random wave trains passing over a rectangular submerged dike by 

using the previously developed numerical model. 

2. Numerical Wave Tank Model 

Numerical analyses have been performed by using a two-dimensional numeri- 
cal wave tank model previously developed by the authors (Ohyama and Nadaoka, 

1991). At both ends of the computational domain, numerical wave-absorption 

filters are installed as shown in Fig. 1. The filter is composed of a sponge 
layer to absorb the incoming shorter waves energy by frictional damping and 

a Sommerfeld-type radiation boundary at the lee side of the layer to transmit 
the outgoing longer waves. This numerical wave tank model additionally incor- 
porates a nonreflective wave generator which combines a vertically distributed 
wave-making source (Ss), introduced by Brorsen and Larsen (1987). 

A decay term proportional to the velocity magnitude is added to the equation 
of motion in the sponge layers.    Based on the potential theory, the dynamic 
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Figure 1. Numerical wave tank model used for the analyses. 

condition on the free surface is consequently derived as 

^ + \{V<t>f + gv +, -I. xi dx ' ion Sp 
dx = 0    (on Sp), (1) 

in which <j>(x, z, t) is the velocity potential, n is the surface elevation from the 
mean water level, and \x is the damping factor. The factor, /i, is distributed 

linearly in the layers as shown in Fig. 1 in order to relieve the wave reflection at 
the leading side of the layers. Based on the results of the earlier study (Ohyama 
and Nadaoka, 1991), the maximum value of the damping factor in the sponge 

layers, /uroo3r, is given as Umaxy^o/g = 0-25 in the subsequent computations. 
Since the governing equation for the velocity potential in the fluid domain 

0 is expressed by a Poisson equation, an integral equation is introduced by ap- 
plying the second form of Green's theorem. All the boundary conditions except 

the dynamic condition on Sp, Eq. (1), are substituted into the integral equa- 
tion. Another integral equation is derived by applying the method of weighted 
residuals to Eq. (1). These equations, which involve <j> (on Sp, Sy, S2 and 54) 
and dcf>/dt, n and dn/dt (on Sp) as unknown variables, are discretized spatially 

and solved simultaneously for successive time steps. 

The nodal points on the free surface, Sp, are considered to move in a vertical 
direction with the time step advance. The unknown variables, <j>, d<j>/dt, r\ and 
dn/dt, can be rewritten by using A4> and An, which are the increments of <f> and 
n, respectively, during the time increment At. In this time-stepping procedure, 
nonlinear terms, which correspond to the spatial displacement of the nodal point 

on Sp, are taken into account for better accuracy (Ohyama, 1990). The linear 
algebraic equations to be solved for A</> (on Sp, Sy, S2 and S4) and An (on 
Sp) are consequently obtained. The earlier paper (Ohyama and Nadaoka, 1991) 
provides a detailed description of the numerical procedure. 

In the subsequent computations, the time increment, At, and the horizontal 
projection of distance between the surface nodes, Ax, are given to be 1/32 of 
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(b) Wave height distribution. 

Figure 2. Evolution of periodic wave for D/ho = 5.25, hs/ho = 0.4, 
(T2hD/g = 0.8, H0/hD = 0.1. 

incident wave period (or of significant wave period for the case of random waves) 
and 1/40 to 1/20 of incident wave length (or of significant wave length for the 

case of random waves), respectively. The initial condition for each case is the 
still-water condition, i.e., <f> = rj = 0, and numerical results 10 periods after the 

"cold" start are used for discussion. 

3. Decomposition Phenomenon of Periodic Waves 

Figure 2(a) shows a numerical example of the wave profile around the dike 
both in time and space, in which a and H0 represent the angular frequency 
and the height of the incident waves. The conspicuous decomposition into the 

shorter waves occurs immediately after passage over the submerged dike, and the 

transmitted waves propagate as nonconservative waves composed of multiple- 

frequency components. The corresponding wave height distribution is indicated 
in Fig. 2(b), together with the linear solution for transmitted wave height (Ijima 
and Sasaki, 1971). Preliminary studies found that the linear theory accurately 
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(a) Above the center of the dike. (b) In the trailing side of the dike. 
Figure 3. Comparison of computed wave profiles with experimental 

observations for a2hD/g = 0.97, hs/hD = 0.3, H0/hD = 0.1, D/hD = 4.0. 

predicted reflected and transmitted wave energies, even when a conspicuous 
decomposition of wave trains occurs. As shown in Fig. 2(b), however, the 

predicted wave height in the trailing side of the dike is markedly greater than 
the corresponding linear solution, and varies in space since the transmitted waves 

propagate as nonconservative waves. 
The wave evolution during passage through the dike, therefore, produces sig- 

nificant phenomena such as the transfer of a large amount of energy to higher 
frequency components along with the augmentation of wave height. 

4. Experimental Verification 

Physical model experiments have been conducted to verify the present nu- 
merical method. The experimental wave tank is 17m long and 0.4m wide; the 
water depth, hD, and the incident wave height, H0, were set at 25cm and 2.5cm, 
respectively (H0/hr> = 0.1). The model of the submerged rectangular dike has 
a width of 100cm (D/hD = 4.0) and a height of 17.5cm (hs/hD = 0.3). The 
wave profiles were measured at three locations: one over the center of the dike, 
and the others 125cm apart from the center of the dike on both sides. 

Comparisons of wave profiles at a point over the center of the dike and at a 

point in the trailing side are given in Figs. 3(a) and 3(b), respectively, in which 

/o represents the incident wave frequency (= a/2ir). The computed wave profiles 
are found to agree favorably with the corresponding experimental observations, 

indicating the reliability of the present numerical model. 
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Figure 4. Wave profile both in time and space around stepped bottom for 
hs/hD = 0.4, o2hDjg = 0.8, H0/hD = 0.1. 

5. Mechanism of the Decomposition Phenomenon 

Figure 4 shows the computed wave profile for the case of a stepped bottom 
with hs/hD = 0.4. The incident wave conditions are identical to those of the 
previous case of the submerged dike (Fig. 2[a]). Figure 4 illustrates that a sec- 
ondary wave appears at the trailing side of the primary wave as the wave crest 

propagates onto the step. It then gradually parts from the main crest and is 
overtaken by the following wave. These basic features of the wave deformation 
are similar to those of solitary wave disintegration over a stepped bottom (Mad- 
sen and Mei, 1969). As indicated in Fig. 2(a), by contrast, wave decomposition 
during passage over the dike occurs drastically, suggesting that its mechanism 

is quite different from that of the solitary-wave disintegration over the stepped 
bottom. Therefore, the wave field in the trailing side of the dike is compared 
with that over the stepped bottom in order to investigate the mechanism of wave 

decomposition. 
The spatial evolutions of the lowest three harmonic amplitudes, \r)n\ (n = 

1, 2, 3), are indicated in Figs. 5(a) and 5(b), in which |(r/0)i| is the first harmonic 
amplitude of the incident wave. As shown in these figures, the second harmonic 

amplitude, |r/2|, is spatially modulated over the step, but is preserved in the 
trailing side of the dike. This modulation phenomenon over the step is explained 
by nonlinear resonant interaction based on the phase mismatch between the free 
and bound waves in the second harmonic (Mei and Unluata, 1972; Bryant, 1973). 

Furthermore, in order to investigate the characteristics of the wave number 
(or celerity), spectral analyses in the wave number/frequency space have been 

performed for both the wave field over the stepped bottom (6.0 < x/hn < 25.0) 
and that in the trailing side of the dike (12.5 < x/hD < 25.0). The results are 



532 

\Vn\ 

I Ml 

l»7n| 

Ifa) 

COASTAL ENGINEERING 1992 

  f/fo = 1   f/fo = 2 ///„ = 3 

5.0 10.0 15.0 20.0 25.0 
x/hD 

(a) Stepped bottom. 
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(b) Submerged dike with D/hn = 5.25. 
Figure 5. Distribution of each harmonic amplitude for hs/ho = 0.4, 

0-2hD/g = 0.8, HQ/hD = 0.1. 

indicated in Figs. 6(a) and 6(b), respectively, in which k is the wave number 
and h is the water depth (h — hs for the stepped bottom and h = hp for the 
submerged dike). In the ordinates, the power spectrum for each component, p'n, 

is divided by the maximum value of the spectrum in the first harmonic (p'i)max- 
In each f/fo—kh plain, a curved line (F) represents the linear dispersion relation 

(kta.nh.kh = 4.v2f2/g), and a straight line (B) is drawn from the origin of 

direction to a point at which the spectrum for the first harmonic (f/fo = 1) is at 
a maximum. The wave components on line (F) and those on line (B) correspond 
to the free waves and the bound waves, respectively. A larger difference in the 

celerity between the free and bound waves is found in the trailing side of the 
dike compared to the case of the stepped bottom. A comparison of the wave 
number spectra in the second harmonic is indicated in Fig. 7. In the shallow- 
water region over the stepped bottom, the amount of energy in the bound wave 
component is larger than that in the free wave component; whereas in the case 
of the submerged dike almost all the energy of the second harmonic exists as 
the free wave component. 

The results of the spectral analyses yield the following description on the de- 
composition phenomenon: In the shallow-water region, both the free and bound 
waves in the higher harmonics result from wave nonlinearity.   However, wave 
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(a) Shallow-water region over the stepped bottom. 
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(b) Deep-water region in the trailing side of the dike with D/hn = 5.25. 
Figure 6. Comparison of wave number-frequency spectrum for hs/hD = 0.4, 

HQ/hD = 0.1, a2hD/g = 0.8. 
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Figure 7. Comparison of wave number spectrum in second harmonic for 

hs/hD = 0.4, H0/hD = 0.1, a2hD/g = 0.8. 

disintegration in this region emerges rather gradually because of the small dif- 
ference between the celerities of the free and bound waves. When these waves 

propagate into the deep-water region where wave nonlinearity is so weak that 
the bound waves can no longer exist, a large amount of energy is transferred 

abruptly to the free waves in the higher harmonics. Since the celerities are 
significantly different among the primary wave and these free waves in the deep- 
water region, the wave disintegration phenomenon is conspicuous compared to 

the case of the stepped bottom. 

6. Variation in Decomposition Phenomenon According to Dike Width 

As shown in Fig. 5(a), the second harmonic amplitude fluctuates spatially 
over the shallow-water region. Assuming the weak nonlinearity of a wave field, 
the beat length of |?72|, A2) can be expressed in the following form (Massel, 1983): 

A2 = 2TT/(A;2 -2*0, (2) 

where k\ and k2 represent the wave numbers of the free waves in the first and 

second harmonics, respectively. The beat length of |?j2| in Fig. 5(a) agrees 
favorably with the value calculated from Eq. (2). 

According to the aforementioned mechanism of wave decomposition, it is 
expected that the amount of energy transferred into the free wave components 
varies appreciably with the dike width, and that the dike width relative to the 
beat length of \r]n\, D/Xn, is a definitive parameter, as suggested by Mei and 
Unliiata (1972). The first numerical example indicated in Figs. 2(a) and 2(b) 
corresponds to the case of D/\2 = 0.5 (X2/hD = 10.5), while Figs. 8(a) and 8(b) 

show the numerical results for D/\2 ~ 1.0, in which the dike width is twice as 
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Figure 8. Wave deformation around submerged dike for D/hp = 10.5, 
hs/hD = 0.4, a2hD/g = 0.8, H0/hD = 0.1. 

large as in the first example. In this case of D/X2 = 1.0, the transmitted wave 
profile is almost sinusoidal and a negligible amount of energy is transferred to the 
higher frequency components during passage over the dike, although nonlinear 
effects such as steepened wave crests can be seen over the dike. Comparison of 
Fig. 8(b) with Fig. 5(a) reveals that the distribution of \r)2\ °ver the dike is 
similar to that over the corresponding stepped bottom. 

The variations in \t]2\ and \rj3\ of the transmitted waves, with D/\2> are 
indicated in Figs. 9(a) and 9(b) for the cases of hs/hD = 0.4 and 0.3, respec- 

tively. In the ordinates, the higher harmonic amplitudes are normalized with 
the first harmonic amplitude. Since \r]2\ and |r/3] are slightly modulated even 
in the trailing side of the dike, spatially averaged values over each beat length 

are plotted in these figures. The results for hs/hD — 0.4 (Fig. 9[a]) show that 

the maximum value of |r?2| appears at D/A2 = 0.5 and the minimum value at 
D/\2 = 1.0, substantiating that the modulation of |T72| over the dike is similar 
to that over the stepped bottom and its value at the trailing edge is preserved 
in the transmitted wave.  In the case of hs/hD = 0.3 (Fig.  9[b]), on the other 
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(b) hs/hD = 0.3. 
Figure 9. Variation in \rjn\ of transmitted waves with D/X2 for a2h£,/g = 0.. 

^fo/A/J = 0.1. 

hand, the value of D/\2, where |J72| attains its maximum, is smaller than 0.5. 
This may be because the wave nonlinearity over the dike is so strong that the 
use of A2 obtained from Eq. (2) is no longer adequate. Furthermore, in this 

condition, since the beat length of [r?31 over the step is nearly one-half of A2, |%| 
becomes the minimum at the location where 1772 J is at the maximum, and the 

peaks of \r]3\ appear on both sides. 
These results lead to the following conclusions: As inferred by Mei and 

Unliiata (1972), each harmonic amplitude in the transmitted waves becomes 

remarkably larger when D/\n is nearly 0.5. When the water depth over the 
dike is very shallow, however, the stronger nonlinearity yields a shorter beat 
length of \rj2\ than predicted from the weakly nonlinear solution. 
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7. Spectral Transformation of Random Waves 

Lastly, this study investigates spectral transformation of random wave trains. 
The nonlinearity of the incident random waves considered here is so weak that 
they are expressed as a sum of multiple-frequency components: 

Vin = J2ansin(knX ~ 27rfj + £n), (3) 
n 

in which rnn is the surface elevation of the incident wave train, and an, kn, fn 

and sn represent the amplitude, the wave number, the frequency and the phase 

lag of each component, respectively. 
Figures 10(a) - 10(c) show the power spectrum of simulated random in- 

cident waves (10[a]), and their modifications through the transmission over a 
submerged dike with D/hD = 4.0 and hs/hD = 0.3 (10[b] and 10[c]). The 
incident wave train considered here is composed of 96 wave components and 
the amplitudes of each component have been prescribed according to the spec- 
trum of Bretschneider-Mitsuyasu (Mitsuyasu, 1970) with Tx/^Jg/ho = 8.0, 
Hi/3/hn = 0.07, in which T^ and Hi^ are the significant wave period and 

height, respectively. The power spectra of the water surface fluctuation were 

calculated from 4096 wave data at a point Ihn away from the center of the dike. 
The power spectrum of the incident waves was obtained from the computation 
for a flat-bed condition in which the dike does not exist. 

In the transmitted wave spectra, several noticeable peaks arise in higher 

frequency components, indicating that a substantial amount of wave energy is 
transferred into the higher frequency components. This is of great importance 
because the augmentation of the wave energy for high frequency makes the 
significant wave period appreciably shorter. In addition, these spectral peaks 
are not located as the higher harmonics of the peak frequency of the incident 
wave spectrum. 

Figures 10(b) and 10(c) show the transmitted wave spectra for the incident 

waves with the same power spectrum (Fig. 10[a]), but with a different series of 
pseudo-random numbers for the specification of the phase lags among the wave 
components. The significant difference in the peak frequencies of the wave spec- 
trum between these two cases indicates the importance of the phase difference 
among the wave components for the transformation of the random wave train. 

8. Conclusions 

The previously developed numerical model has been applied to the analyses 
of wave decomposition during passage over a submerged dike. The computed 

wave profiles at various locations agree favorably with experimental observations. 
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Figure 10. Power spectra of random waves for Tij3\fg/hp = 
HU3/hD = 0.07, D/hD = 4.0, hs/hD = 0.3. 
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The higher harmonics generated over the dike are found to be transformed into 

prominent free waves in the trailing side of the dike, demonstrating the essential 

mechanism of the observed decomposition phenomenon. Further computations 

show that the occurrence of decomposition and its degree depend significantly 

on dike width. The results for random waves indicate that a substantial amount 

of wave energy is transferred into higher frequency components. Furthermore, 

the power spectrum of the transmitted wave is significantly influenced by the 

phase spectrum of the incident random waves. 
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