
CHAPTER 36 

BREAKING OF IRREGULAR WAVES ON A SLOPE* 

M. MIZUGUCHI1 

ABSTRACT 

Breaking condition of irregular waves on a slope is 
studied through a series of labolatory experiment of 
bichromatic waves. First, breaking condition of individual 
waves defined by zero-down crossing method is compared with 
breaking condition of regular waves. An emperical formula 
is proposed to take into account of the influence of both 
the depth and width of the following trough. Then it is 
shown that the breaking condition of regular waves can be 
applied succesfully when the individual waves are properly 
defined by paying attention to the nature of the wave 
crests. Finally these results obtained from the laboratory 
experiment are tested against the field data with 
reasonable success. 

1. INTRODUCTION 

Several studies have been already reported on the 
breaking of irregular waves on slopes. Goda (1973), Battjes 
and Janssen (1978), and Thornton and Guza(1983) dealt with 
probabilistic ( and somewhat heuristic ) methods to be 
incorporated into the transformation model of wave height 
distribution in the nearshore zone. Sugawara and Yamamoto 
(1978), Mizuguchi and Matsuda (1980), and Mase et al.(1986) 
constructed an irregular wave transformation model, in 
which wave breaking condition of individual waves are 
assumed to be the same as that of monochromatic waves. 

*) Part of this paper was published in Proc. of 35th 
Japanese Conf. on Coastal Eng. in Japanese( Mizuguchi et 
al., 1988) 
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There also have been presented some papers, which 
directly and experimantally investigated breaking 
conditions of individual waves in irregular wave trains 
either in laboratory or in the field ( Iwagaki et al.;1977, 
Isobe et al.;1980, Hotta et al.;1984, Kimura and 
Seyama;1986, and Mizuguchi et al.;1987). One can summarize 
these papers as follows. 
1) Local wave breaking condition of individual waves ( 
normally defined by zero-down crossing method ) shows 
considerably larger data scatter than that of monochromatic 
waves. 
2) In average, individual waves in irregular wave trains 
tend to break more easily, that is, to break with smaller 
wave height compared with regular waves. 
3) Adjacent waves, in particular, the depth of the 
following trough for the waves defined by zero-down 
crossing method, have some influence on its breaking. 

In this paper, first, we look for a possible 
explanation for the cause of the data scatter as well as 
the tendency that irregular waves break more easily, taking 
into account of the influence of the neighbouring waves. 
In due course, we test the applicability of regular wave 
breaking criterion to irregular waves, and propose a way 
to relate the breaking criterions of irregular waves and 
regular waves. For that purpose, we conducted a series of 
labolatory experiment, using bichromatic waves, which 
essentially show a characteristic feature of the irregular 
waves that the neighbouring waves are not the same as is 
so for regular waves. An advantage to employ the 
bichromatic waves is that it is easy to measure the 
breaking waves by wave gauges, as they have limitted number 
of fixed breaking points. Finally, we apply our results 
obtained from the labolatory experiments to the field data 
and discuss the improvement accomplished and problems 
remained. 

2. LABORATORY EXPERIMENT 

Experiment was carried out in a wave flume of 30 cm 
wide, 20 m long and 45 cm in height with glass side walls. 
Beach of 1/20 slope with painted plate was installed in one 
end. Wave maker in the other end was of an absorbing type. 
Water depth was 35.5 cm in the constant depth area. 

Wave generating signal e was chosen as follows. 

e = acos(2nt)   + gacos(nt+e) (1) 

Here a is the amplitude of the primary waves of period 1 
s. Various combinations of bichromatic waves were produced 
in the wave breaking area by varying the phase difference 
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Fig. 1  Typical wave profile in time  of two-wave 
train at one of breaking points. 
Various quantities to possibly influence the 
breaking condition are evaluated. 

6 and the wave amplitude ratio g. This signal generates 
two-component waves also in terms of the time series, since 
the secondary wave has the half frequency of the primary 
waves. Hereafter we call this wave train as two-wave train. 
The amplitude a of the primary wave was set to be around 
3 or 6 cm in the uniform depth area. The amplitude ratio 
g was varied as 0.1, 0.2, 0.3, and 0.5. Typical surface 
profile at a breaking point is shown in Fig. 1. Total of 
160 runs of two-wave train experiment were conducted. In 
addition, 36 runs of regular wave experiment, which can be 
considered to be of the cases g=0, were also carried out 
in order to check the validity as well as the values of the 
experimental constants of the following Goda's breaking 
criterion ( Goda; 1973). 

H/d = A(L0/d)[l-exp{-Bd(l+Ktan
sp)}] + C (2) 

where H, d, and L0 denote wave height, water depth, and 
deep-water wave length respectively, tanfi is the beach 
slope. A, B, K, s and C are experimental constants and the 
originally proposed values are 0.17, 1.5, 15, 4/3 and 0 in 
its order. However, Eq.(2) with the original values of 
constants gives slightly larger breaking wave height as 
shown in Fig.2, as was also pointed out by Sugawara and 
Yamamoto(1978). A=0.158, with original values for other 
constants, is used in this paper, since it gives the better 
fitted curve to our regular wave experiment. 

In the experiment, first, video-camera was used to 
determine the breaking points. Then capacitance-type wave 
gauges were placed at those breaking points ( normally two 
for two-wave trains ) to measure the surface profiles. The 
breaking points were defined visually as the position where 
significant white foams were observed. If not obvious, then 
the point of maximum wave height was searched by moving the 
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Fig. 2  Local breaking condition of regular waves on 
a uniform slope. 
Solid lines denote the experimental formula by 
Goda(1973) with specified values of A. 

wave gauges in the cross-shore direction. The data was 
recorded on a digital tape recorder with sampling frequency 
of 50 Hz for the cases of a a 3 cm and 100 Hz for both 
cases of a = 6 cm and of regular waves. Data processing as 
well as signal making were done on a personal computer ( 
Sord M343 SXII). 

3. ANALYSIS OF LABORATORY DATA 

The obtained data show small fluctuation of period 30 
s, which is roughly the period of the first harmonics of 
the wave flume. The quantities defined for individual waves 
were averaged over 30 cycles of the primary wave. Positions 
of wave breaking also fluctuated within the horizontal 
distance of about 5 cm. This value gives rough estimate for 
the experimental error. 

Zero-down crossing method was employed to define the 
individual waves, since this method takes the rise from the 
trough to the crest as the wave height as shown in Fig.l. 
This height is more appropriate for investigating the wave 
breaking condition than the fall height from the crest to 
the trough taken by the zero-up crossing method. As shown 
in Fig.l, various quantities associated with the defined 
wave, or more precisely with the shape of the troughs of 
both sides of the concerned crest, were also calculated in 
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Fig. 3  Breaking condition of two-wave train waves. 
Goda's experimental formula for regular waves, 
Eq.(2), is denoted by a solid line. 

order to study the influence of the adjacent waves, For the 
breaking depth, the still water depth at each location is 
employed. In this stage, a data-base of 196 cases of local 
wave breaking conditions is obtained. 

3.1 Breaking Conditions of Waves Defined by 
Crossing Method and Regular Waves 

Zero-Down 

Fig. 3 shows the local wave breaking condition in 
which (H/d)B is plotted against (d/L0)B, Subscripts B 
indicates those evaluated at the breaking point. The 
distribution of the data is very similar to the case of 
irregular waves and the data scatter is much larger than 
that in Fig. 2 for regular waves. For irregular wave 
results in laboratory experiment, see Fig. 2 in Kimura and 
Seyama (1986). 

Fig. 4 shows direct comparison of measured relative 
wave height, (H/d)E, against that, (H/d)R, given by Eq.(2). 
This figure shows that the waves break with wide range of 
relative wave height, 0.45-0.95, in spite of the 
expectation from the regular wave formula that they break 
with narrow range of relative wave height, 0.6-0.85. This 
may suggest that there are some other hidden parameters to 
control the breaking of irregular waves and also that the 
large data scatter in Fig. 3 can be reduced by playing with 
the definition of the water depth. 
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Fig. 4 Direct comparison of breaking wave condition 
for two-wave train waves with Goda formula. 

Kimura and Seyama (1986) succeeded to reduce the data 
scatter by introducing a modified water depth dm, that is 
the depth below the median level of wave crest and trough. 
However, the reduction may be largely due to the resulting 
nonlinear scaling in the vertical axis, i.e. H/dm. 
Moreover, it is difficult to find physical meaning of dm 
for the wave breaking. 

Here, first, we assume that the large data scatter is 
brought in as a result of neglecting the difference of the 
adjacent waves. We plotted the ratio of measured relative 
wave height, (H/d)E, to the relative height given by 
Eq.(2), (H/d)R, against various parameters defined from the 
quantities shown in Fig.l. Then the ratio shows clear 
dependency on the following parameters, HU/H ( where HU = 
H-HT+HTj ) and TU/T ( where TU = T-TT+TTj ). HU and TU are, 
respectively, the wave height and period, defined by the 
zero-up crossing method for the concerned wave crest. This 
is very conceivable when one thinks of the fact that it is 
the wave crest that breaks. In Fig. 5, the ratio of 
(H/d)E/(H/d)R is plotted against HU/H with TU/T as a 
parameter. The data, as a whole, show monotonical increase, 
implying the tendency that the larger the HU/H is, i.e., 
the deeper the following trough is, the higher the breaking 
wave height is, as was pointed out by Isobe et al.(1980). 
However, once the length of the following wave trough is 
taken into account, the data show monotonical decrease, 
indicating that the waves which are followed by relatively 
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Fig. 5 Effect of the shape of the following trough 
on in individual wave breaking in two-wave 
trains. Upper and lower diagrams are for 
different values of the parameter TU/T. 

deeper and shorter trough do break easily or with smaller 
wave height. In other words, the following deep trough, 
which is nearer to the wave crest, makes the crest break 
easily. This is reasonable as the situation means that the 
wave is sharp-crested and the actual water depth for the 
crest is shallow. The least square error method was applied 
to deduce the best-fitted curves, which are plotted with 
solid lines in Fig.5. They are expressed by the following 
equation. 

(H/d)E/(H/d)R = 0. 58 ( HU/H )"TU/Texp{ 0.48 (TU/T)} (3) 
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Fig. 6 Comparison of breaking conditions for two-wave 
trains after modification. 

Equation (3) gives value of 0.94 for the ratio when TU/T=1 
and HU/H=1, although unit value my be expected as the 
conditions correspond to the regular waves. The irregular 
shape of the individual waves may responsible for the easy 
breaking, although there is a possibility that the 
difference is within the experimental error. The data in 
Fig. 5 still show large scatter. In order to reduce the 
scatter, other parameters like TMX to directly desribe the 
shape of the trough could be better to be used. However we 
chose HU and TU to introduce the empirical formula, as they 
are the traditional quantities defined by zero-up crossing 
method. 

Figure 6 shows comparison of measured relative wave 
height with that given by Eq.(2) with modification after 
Eq.(3). The improvement is obvious as the average tendency 
follows that of regular waves. The correlation coefficient 
in Fig. 6 is 0.68 and much large than the value of 0.15 for 
Fig. 4. It may be possible to further reduce the the data 
scatter by introducing another parameter to describe the 
irregular shape of the waves. However that sort of approach 
may not be productive. 

3.2 Breaking Condition of Individual Wave Crest 

In the preceding section a modification of regular 
wave breaking formula for the individual waves defined by 
zero-down crossing method was attempted.  The results 
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Fig.    7      Properties   of   an   individual   wave   crest   in 
bichromatic waves. 
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Fig. 8 Breaking condition of individual wave crests 
in two-wave train waves. 

indicates that the properties of the wave crest are 
important to control the breaking. Now we look into the 
breaking condition of a wave crest in comparison with 
regular wave breaking. Here we define an individual waves 
by trough-to-trough method as shown in Fig. 7. For this 
individual waves, the height, H„, is defined as the 
vertical distance between wave crest and the line drawn 
from the preceding trough to the following trough. Local 
water depth d. is calculated by applying first order 
cnoidal wave theory ( Isobe;1985 ) as ,d„ = d,.+ (mean 
elevation of cnoidal waves over though level), with H,, 
trough-to-trough period, T„, and trough depth dt given. 
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Fig. 9  Bottom topography of field observation site 
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Fig. 10 Comparison of breaking condition of field 
waves defined by zero-down crossing method and 
regular waves. 

Figure 8 shows local wave breaking condition for the 
individual wave crests. In contrast to Fig. 2, similarity 
with regular wave breaking is remarkable. There is still 
seen large data scatter, some of which may be of 
experimental error but most of which may be due to an 
artifice to approximate an individual wave by a regular 
wave. It is noted that the differences of wave period T, 
from the period T defined by zero-down crossing method are 
large and contribute quite significantly to move the data 
points in Fig. 7. In Fig. 7, average values of breaking 
height-depth ratio as well as their standard deviation 
could be evaluated for a given relative depth, as was done 
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Fig. 11  Comparison of breaking condition of field 
waves after the modification. 

by Kimura and Seyama(1986) for waves defined by zero-down 
crossing method with their modified depth dm, yielding 
experimental formulae for the breaking condition, though 
not tried here. 

4.BREAKING CONDITION OF FIELD WAVES 

16 mm camera movies, which shot the target poles in 
the nearshore zone were used to take out the waves, which 
are just breaking at the location. This film was already 
analyzed and the results for the zero-down crossing waves 
were reported by Mizuguchi et al.(1987). Here we re-analyze 
the film in the same way as we did for the labaoratory data 
and calculated the quantities shown in Fig. 1. Fig. 9 shows 
the cross-shore bottom topography of the site. The data at 
position D is used. The mean water depth was 2.79 m. 
Numbers of just breaking waves at position D were 47 out 
of 1118 waves defined during the observation. 

In Fig. 10, relative wave heights at the breaking 
point for field waves are compared with regular wave 
formula. For tanp, value of 1/25 is used. Figure 10 is very 
similar to Fig. 4, showing that waves break with wide range 
of, H/d, values, although Eq.(2) gives narrow range of the 
values. 

Figure 11 shows comparison of relative wave heights 
for field waves, (H/d)F, with those of the breaking formula 
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Fig. 12 Comparison of breaking condition of 
individual waves defined by trough-to-trough 
method for field waves. 

modified with Eq.(3), (H/d)RM. Figure 12 shows comparison 
of breaking condition of the wave crests, (H,/d,)F, for 
field waves and regular waves. Both diagram show a linear 
trend though large data scatters are still observed. There 
is no tendency in Fig. 12 that the field values are 
smaller than those given by regular wave formula, in 
contrast to the results in Fig. 8. The linear trends proves 
that the present modifications are in the right direction 
to establish the wave breaking condition of the individual 
waves in the field waves. The data scatter may result from 
various complexities observed in the field, such as three 
dimensional feature of field waves and non-uniform bottom 
slope, in addition to the factors possible in laboratory 
data. Recently, Sato et al.(1990) looked into the effect 
of long period waves on the irregular wave breaking. 
Interaction between long period waves and wind waves may 
be partially responsible for the remaining data scatter. 

5. CONCLUSIONS 

We can conclude that the individual waves in an 
irregular wave train do, in average, break in a similar 
condition to that of the regular waves. However, 
conventional zero crossing methods may not be suitable to 
defining the breaking waves, for thus defined waves need 
the systematic modification as given by Eq.(3). Regular 
wave breaking condition can be applied reasonably well to 
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the waves defined by the trough-to-trough method. 

One can also conclude that the average breaking 
height-depth ratio of two-wave train is slightly smaller( 
about 5 % ) than that of regular waves, although this 
tendency is not clear in field waves, and that some data 
scatter is inevitable when the regular wave formula is used 
for the individual waves. The irregular shape of the 
individual waves may be responsible for both of them. 

Here only local wave breaking criterion is studied. 
It is necessary to develop a shoaling model for irregular 
waves as well as for two-wave trains, which is valid upto 
breaking point, in order to be able to predict both the 
breaking depth and wave height. 
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