
CHAPTER 34 

Numerical Validation of Directional Wavemaker Theory 
with Sidewall Reflections 

E.P.D. Mansard,* M.D. Miles* and R.A. Dalrymplet 

ABSTRACT 

A directional wavemaker theory has been developed by Dalrymple to produce a 
desired oblique planar wave train at any cross-section in the basin. This theory, 
which uses the reflections from the sidewalls of the basin, can also account for 
slowly varying depths. This paper describes a numerical validation of this theory, 
for the constant depth situation, by a wave diffraction model that was recently 
verified through an extensive series of experimental investigations. 

1.0   INTRODUCTION 

To generate a specified multidirectional wave field in a laboratory basin, the 
board motions of a segmented wave generator are generally computed on the 
basis of the snake principle. Although this technique is being used extensively, it 
has some limitations. For instance, it cannot account for the effects of reflection 
from sidewalls and the diffraction due to a segmented wave generator of finite 
length. Also, the size of the optimal testing area inside the model basin that 
results from this technique can be quite small, particularly if the maximum angle 
of directional spread is large. In order to overcome some of these limitations, 
research has been under way in leading hydraulics laboratories around the world 
into improved techniques for the simulation of multidirectional waves. 

Funke & Miles (1987) developed an extension of the snake principle which can be 
used to obtain a larger useful working area in a multidirectional wave basin. This 
technique, known as the corner reflection method, makes use of intentional reflec- 
tions from partial sidewalls about 5m long on both sides of the basin, extending 
from each end of the wave generator. Like the snake principle itself, however, 
waves generated by this method are still subject to wave diffraction errors. 
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Recently, Dalrymple (1989) developed a technique by which an oblique planar 
wave train of any desired angle of incidence can be generated at any pre-selected 
cross-section in the basin. This technique was based on a splitting procedure 
used on the mild slope equation to develop a propagation equation for the wave 
potential within a wave basin with reflecting sidewalls and a bottom which may 
have a slope in the direction perpendicular to the wave generator. The resulting 
equation was solved analytically to determine the wave fields as a function of 
distance from the generator segments, given their motions. 

The major advantage of the Dalrymple theory is that diffraction, refraction and 
shoaling processes are all properly accounted for, within the realm of linear wave 
theory. It is also possible to use this technique to calculate the segmented wave 
generator paddle motions required to produce a pure full-width oblique plane 
wave train at a specified distance, D, from the wavemaker. Multidirectional 
wave fields are typically generated by the linear superposition of many oblique 
plane wave components. If the Dalrymple theory is used to generate each compo- 
nent, instead of the snake principle, then the area of the basin where the desired 
multidirectional wave field can be accurately reproduced will be much larger. 

The analytic solution used in the Dalrymple method is only applicable to the case 
of a wave basin with full-length reflecting sidewalls. The desired oblique plane 
waves are obtained only at the specified distance D from the wavemaker. As the 
waves propagate further down the basin, they gradually become contaminated 
by diffraction and reflection from the sidewalls. The undesired reflection effects 
can be avoided by using side absorbers at distances greater than D, although 
diffraction effects will still occur. In many model testing applications, the use of 
partial-length sidewalls is also necessary to reduce errors which would otherwise 
be caused by sidewall reflection of the diffracted wave field produced by the 
structure being tested. 

It was therefore decided to carry out a numerical study to investigate the per- 
formance of the Dalrymple method in a typical multidirectional wave basin with 
partial-length sidewalls. Wave paddle motions were calculated by the Dalrymple 
method and the resulting wave field in the basin was then computed by using the 
linear diffraction model developed by Isaacson (1989). This model can calculate 
the wave field at any position in the basin, whereas the Dalrymple theory can 
only be used in the region between the reflecting sidewalls. Another reason for 
choosing the Isaacson model was that it has recently been verified by extensive 
experiments in a directional wave basin by Hiraishi et al. (1991). The present 
numerical study was restricted to the case of a constant depth basin because the 
Isaacson model cannot be used for a basin with a sloping bottom. In addition 
to investigating partial-length sidewall effects, the Isaacson model also provided 
an independent verification of the paddle motions predicted by the Dalrymple 
method. 
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2.0 THEORETICAL BACKGROUND OF DALRYMPLE'S THEORY 

A brief description of Dalrymple's theory is outlined here. Dalrymple (1989) 
contains a more detailed presentation. 

The wave basin is rectangular with width 26. The co-ordinate axes are located 
at the centre of the wave generator with the y axis directed along the generator 
and the x axis directed prependicularly into the basin. The sidewalls of the basin 
at y = ±6 are impermeable. 

The mathematical theory used in this model follows the treatment of Dalrymple 
and Kirby (1988) for the combined diffraction and refraction of waves on slop- 
ing beaches. The assumed linear water wave motion is described by a velocity 
potential satisfying the mild slope equation. This mild slope equation, which 
governs the progressive wave mode and neglects the evanescent wave mode, can 
be written as: 

•<.„...o-«..,>=^-.~ (» 

where CCg is the product of the wave phase velocity and group velocity. The wave 
number, k, is related to the water depth, h(x), and the angular wave frequency, 
u>, by the linear dispersion relationship. 

The above equations are consistent with small amplitude assumptions and the 
imposition of a mild bottom slope. At the sidewalls of the basin (y = ±6), there 
is no flow normal to the walls. Therefore, 

^ = 0    on      y = ±6    . (3) 
ay 

To satisfy these two lateral boundary conditions, 

oo 

<j>(x, y) = <}>(x) J2 (an cos \ny + bn sin jny) (4) 
71=0 

where A„ = (nw/b) and jn = (n + \)ft/b for n = 0,1,2,..., oo . 

The reduced mild slope equation becomes two equations: 

h{cc°fx)+
cc^-^^« ^ 

where a = \n or 7n depending on which of the forms of the solution in Equation 
(4) is used. 

The reduced wave potential, <j>, can consist of waves propagating in the positive 
and negative x directions, i.e.   <j>+ and <j>~.   Adopting the splitting procedure, 
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assuming the reflected waves to be small and, therefore, neglecting the negative 
potential <j>~, the total forward propagating velocity potential can be written as: 

where 

tf = E A"° K«(x> A-) eifo"^^ndx cos\ny (7) 
n=0 

ti = E Bno Ksr{x, 7„) e;r V^W* sinlny (8) 
n=0 

and /Cr is the product of the shoaling and refraction coefficients. The subscripts 
e and o refer to even and odd solutions about the y = 0 axis. Some of the 
"progressive" waves are evanescent, those for which An or 7n > k(x). In most 
cases, when only the far wave field is required, the largest value of n to be retained 
in the summation is only on the order of 10-20. Although the solution for the 
velocity potential, <j>, is analytic, the phase integrals are determined numerically 
by the Euler integration method. 

In the parabolic forms of the equation, the condition at the wave paddles (x = 0) 
is an initial condition that forces the wave-induced water motions (defined by 
d(j>/dx) to match the motion of each wave paddle. 

The wave paddle motion is assumed to have a linear phase shift along the y axis, 
leading to the generation of a plane wave train with an angle of incidence, 6, with 
respect to the x axis. Thus, the paddle motion will be described by the real part 
of 

X = S0 g{z) e^-*") (9) 

where g(z) is the vertical dependence of the paddle motion over the water depth, 
Ao = k sin 9 is the y-component of the wave number of the desired wave and So 
is the maximum amplitude of the paddle stroke at the mean free surface. 

The linearized initial condition for this wave generator, in terms of the horizontal 
velocity in the x direction, is specified by even and odd contributions about 
the y-axis. Now matching the even and odd solutions to the horizontal velocity 
determined from the velocity potential at x = 0, and exploiting various orthogonal 
properties of the functions that occur in this problem, the expressions for the 
coefficients Ano and Bno simplify to: 

A    -    2(-l)"50^GAosin(Ao&) 

(AS - K) \/*2 - K b 

and 
n 2»(-l)nS,mGAoco8(Aob) 
£>n0 = 7"   (11) 

(AS - ll) V^2- lib 
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for the case of a wave generator spanning the full width of the basin. 

The wave field generated in the basin, for a given set of paddle motions, can be 
computed with these expressions. Alternatively, if it is required to produce a 
desired oblique plane wave train extending across the full width of the basin at 
a given x location, this can easily be done by determining the initial coefficients 
Ano and B„o, not at x ~ 0 as before, but at the desired location x = XD- This 
yields new values of the coefficients 

and 

A,   _ 4oe-Tv^^ 
V   (n.      \   \ »' L     \/k2—Xl dx Ksr(xD,An) e Jo    v       n 

where Xo is evaluated at XD- The wave paddle motion is now obtained from 
Equations 7 and 8 evaluated at x •= 0, resulting in the summation of various 
sinusoidal motions. 

Although Dalrymple (1989) provides some preliminary validation of this tech- 
nique using the same theory, a more detailed validation has been carried out in 
this study using the Isaacson (1989) diffraction model, which has recently been 
verified by an extensive set of physical experiments. A brief description of the 
Isaacson model and its experimental verification is given below. 

3.0 THEORETICAL BACKGROUND OF THE ISAACSON MODEL 

This model was developed by Isaacson (1989) to predict the wave field in a mul- 
tidirectional wave basin. It is based on linear wave diffraction theory and uses 
a boundary element representation of the segmented wave generator and the re- 
flecting walls of the basin. 

Isaacson defines a velocity potential satisfying the Helmholtz equation within 
the fluid region and the boundary conditions along the generator faces and any 
specified reflecting walls. A suitable radiation condition is also applied so that the 
remaining parts of the wave basin boundary are treated as perfect wave absorbers. 

The potential <j> may be expressed as the potential due to a distribution of point 
wave sources along the generator faces and any reflecting boundaries. Thus, 

^) = ^Jsf(0G(x;()dS (14) 

where S denotes the horizontal contour along the generator faces and fixed walls 
and /(£) represents the source strength distribution function. G(x; £) is a Green's 
function for the potential at an arbitrary point x due to a point wave source 
located at the point £ on S, and dS denotes a differential length along S. 
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The boundary condition along S equates the flow velocity component normal 
to S to the wave paddle velocity along a generator face and to zero along a 
reflecting wall. This gives an integral equation for /(£) which is then solved by 
using a discrete representation of the horizontal contour, S, with a finite number 
of short straight elements and assuming the source strength to be constant over 
each element. Using this approximation, the integral equation is satisfied at the 
centre of each boundary element and is thus reduced to a set of linear equations 
for the source strengths. The velocity potential, (f>, is obtained from the solution 
of these equations and a discrete version of Equation 14. Once the potential is 
known, the height and the phase angle of the waves at any point in the basin can 
be calculated easily. 

The most important parameter in this numerical model is the total number of 
discrete boundary elements that are required to predict the wave field in the basin. 
Reducing the boundary element length increases the accuracy of the predicted 
wave field but eventually leads to excessive computational effort. Hiraishi et al. 
(1991) undertook a numerical investigation to determine the optimum ratio of 
boundary element length to wave length required to obtain reliable results. These 
predictions were subsequently validated by an extensive experimental program. 

4.0  EXPERIMENTAL VALIDATION OF THE ISAACSON MODEL 

The amplitudes and phases of wave trains predicted by this diffraction model for 
different combinations of wave periods and angles of incidence, were compared to 
measurements made at more than 200 locations in a test basin. A brief description 
of this experimental investigation is given below. 

The experiments were carried out in the multidirectional wave basin of the NRC 
Hydraulics Laboratory, which has a length of nearly 20m and a width of 30m. A 
segmented wave generator consisting of 60 segments, each with a width of 0.5m 
is located along one 30m side of the basin. 

Perforated sheet metal wave absorbers, developed by the NRC Hydraulics Labo- 
ratory to yield less than 5% reflection, were installed along the other three sides of 
the basin. Removable sidewalls could be used to cover the side absorbers, either 
totally or partially. 

In order to scan the sea states prevailing at different locations in the basin, a steel 
frame was designed to accommodate nineteen wave gauges. This steel frame, 
shown in Figure 1, was suspended at a single point from a hoist which was in 
turn attached to a trolley. This trolley ran, through remote-control, on a track 
under the ceiling over the centre of the basin aligned in a direction normal to the 
face of the wave generator. The frame could also be rotated about its suspension 
point to make simultaneous measurements of wave profiles along a line parallel 
to the crest of an oblique wave. 

Validation of the Isaacson diffraction model was carried out using both long- 
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Figure 1: Photograph of Steel Frame with Wave Gauges 

crested normal and oblique regular waves. Waves with periods ranging from 
1.5s to 2.25s were produced by the snake principle and also by the NRC corner 
reflection method, using short reflecting sidewalls of approximately 5m length. 

Since the Isaacson model is based on linear theory, wave heights were kept under 
20cm. For each sea state, wave measurements at different cross-sections in the 
basin were carried out by relocating the 19-probe frame at different target posi- 
tions. At each position, wave generation and data sampling were exercised for 
180s. In order to correlate measurements made at the various cross-sections in 
the basin, the data acquisition was synchronized with the activation of the wave 
generator. A large number of tests was carried out to ensure repeatability of the 
sea states. Sufficient time was allowed for the oscillations in the basin to settle 
down between successive tests. While a detailed presentation of these investi- 
gations can be found in Hiraishi et al. (1991), one example of the comparison 
between numerical and physical model results is presented here. 

The points in Figure 2a show the wave height distribution realized at three dif- 
ferent measurement lines, as well as the corresponding numerical predictions, for 
2s waves propagating in a line parallel to the wave generator. The distances of 
these lines, measured from the wave paddles and expressed as Xc, are indicated 
in the figure. 

Figure 2b illustrates results of oblique waves with 6 = 30°, measured in a line 
parallel to the wave generator (i.e. a = 0°) and parallel to the crest line (a — 30°). 
For the sake of easier comparison, the measured wave heights, H, are normalized 
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Figure 2: Comparison of Measured and Predicted Waves for Isaacson Model 

with respect to the target heights, HQ. It can be seen from this figure that the 
measured wave heights agree reasonably well with the predicted ones. Similar 
cases of good agreement were found for all periods except one that stimulated 
cross-mode waves in the experimental basin. Interested readers should refer to 
Hiraishi et al. (1991) for a complete presentation of the results. 

Based on these experimental investigations, it was concluded that the Isaacson 
numerical model can predict the generated wave field quite well for a specified 
basin layout and a specified set of segmented wave generator paddle motions. 

5.0 VALIDATION OF DALRYMPLE'S THEORY 

5.1 Validation Procedure 

Since the Isaacson diffraction model has been extensively validated by the exper- 
iments described above, it was decided to use it to assess the effectiveness of the 
Dalrymple method. Although Dalrymple's theory itself can be used to predict 
the water surface elevation, this can only be done in the region between the re- 
flecting sidewalls. Since the wave field at the wavemaker is rather complex for the 
Dalrymple method, the accuracy of the oblique plane wave produced may also 
be limited by the finite width of the wavemaker segments. The Isaacson model 
allows the wave field to be calculated at all points in a basin of constant depth, 
and also can model the effects of finite segment width. 
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Figure 3: Layout of Basins for Verification of Dalrymple's Theory 

In view of these considerations, the following procedure was used to investigate 
the performance of the Dalrymple method in a typical wave basin: 

• Use Dalrymple's theory to estimate the required paddle motions of the 
segmented wave generator for the reproduction of a given sea state at the 
desired location. 

• Use the computed motions as inputs to the Isaacson diffraction model to 
predict the wave field inside the test basin and determine how accurately 
the desired sea state can be realized at various locations. 

The layouts of the basin used in this numerical procedure are shown in Figure 3. 
These layouts correspond to the NRC Hydraulics Laboratory basin described 
above. Two different cases of sidewall lengths were chosen for this study. Fig- 
ure 3a represents the situation where the two sides are covered fully with reflecting 
walls, while Figure 3b corresponds to sidewalls extending only 10m from the pad- 
dles; the remaining 10 metres on each side consist of absorbers. In both cases, 
the wavemaker was assumed to have a segment width of 0.5m. 

According to Dalrymple's theory, it is possible to reproduce a desired oblique wave 
train at any cross-section in the basin up to the limit of the reflecting sidewalls. 
Consequently, the desired wave train can be produced at any distance from 0 to 
20m from the wavemaker in the layout of Figure 3a but only at distances between 
0 and 10m for the case of Figure 3b. 
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5.2   Results of the Validation Procedure 

5.2.1 Full-length sidewalls 

A comparison of the snake principle with no sidewalls and the Dalrymple method 
with full-length sidewalls is shown in Figure 4 for a wave train with a period of 
T = 1.2s and a propagation angle of 9 = 30°. The wave height distributions for 
both methods were calculated by the Isaacson model. It can be seen that wave 
height uniformity is greatly improved with the Dalrymple method, not only in 
the main diffraction zone at the right, but in the centre of the basin as well. 

Wave height distributions, at various distances from the wavemaker, are shown 
in Figure 5 for the basin layout shown in Figure 3a. These were predicted by the 
Isaacson model using the paddle motions computed by Dalrymple's theory. In 
Figure 5a, the target sea state is a wave train with a period of T = 0.75s and a 
propagation angle of 9 = 15°. In Figure 5b, the target wave train has a period of 
T = 1.20s and a propagation angle of 6 = 30°. In both cases, the reproduction 
distance, xo, is 10m. 

These figures demonstrate the capability of Dalrymple's method. It is interesting 
to note the complexity of the wave field that is required to be produced near the 
paddles to simulate the desired water surface elevation at the specified locations. 
Similarly, the influence on the wave field of the reflection from the solid walls 
extending beyond 10m can also be appreciated. 

5.2.2 Partial-length sidewalls 

Figure 6 illustrates results similar to those in Figure 5 but for the basin layout 
depicted in Figure 3b. A target wave train with T = 0.75s and 9 = 15° was used 
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and wave fields were calculated for two different reproduction distances, XQ. The 
results for XD = 5m and xp = 10m are shown in Figures 6a and 6b, respectively. 
Figure 6b is particularly interesting since it shows the ability to reproduce the 
desired sea state at the end of the sidewalls. As expected, the absorbers located 
beyond the 10m limit of the sidewalls help eliminate the reflections, thus ensuring 
a reasonably good wave field, even beyond the 10m distance. 

Once again, these figures illustrate the validity of Dalrymple's theory. It should 
be noted that, although the water surface elevation realized at the desired loca- 
tions is very good, a small variability (less than 5%) seems to exist and tends to 
increase with wave period. Research is continuing to investigate the reasons for 
this variability. Possible causes include finite segment width effects and the trun- 
cation point used for the summations in the Dalrymple theory (e.g. Equations 7 
and 8). 

6.0   SIZE OF AREA WITH HOMOGENEOUS SEA STATES 

For model studies of offshore or coastal structures, it is important to ensure that 
a large area with a homogeneous sea state is available for testing purposes. For 
this reason, it is of interest to estimate the size of homogeneous area that can be 
obtained using Dalrymple's theory. 

An example of this is shown in Figure 7 which illustrates the boundary inside 
the wave basin where the wave heights can be expected to be within ±10% of 
the target wave height, Ho- The two basin layouts shown in Figure 3 have been 
used. The thick line shows the result for full-length reflecting sidewalls, while the 
dashed line shows the case of partial-length sidewalls. The sea states illustrated 
in Figure 5b were used in these calculations for the full-length sidewall case. 

It can be seen that the homogeneous area extends over the full width of the 
basin at the reference distance of XD = 10m, where the target wave train was 
to be reproduced. At larger x distances, the width of the homogeneous zone 
gradually decreases. In this case, it is better to use a 10m sidewall on one side 
to prevent reflection when x > XQ and a 20m sidewall on the opposite side to 
reduce diffraction effects. However, in the general multidirectional case, with 
waves propagating in both positive and negative directions, it would be best 
to use partial-length sidewalls on both sides. More calculations of this kind 
are under way in order to determine the optimum sidewall length for various 
multidirectional wave situations. 

7.0   CONCLUSIONS 

Dalrymple has proposed a theoretical model to reproduce a planar, oblique wave 
train at any predetermined cross-section in a multidirectional basin. This theory, 
which uses reflections from sidewalls and the mild slope equation for varying water 
depth, was validated numerically for a constant depth situation using the Isaacson 
diffraction model.   The results indicate that Dalrymple's method is indeed a 
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Figure 5a:    XD= 10m,    T = 0.75a,     6=15" 
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Figure 5b:    XD = 10m,    T = 1.20s,     9 = 30" 
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Figure 5: Dalrymple Method Wave Height Distributions for 20m Sidewalls at 
Various X Distances from the Wavemaker. 
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Figure 6a:    XD = 5m,    T = 0.75s,     6 = 15" 
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Figure 6: Dalrymple Method Wave Height Distributions for 10m Sidewalls at 
Various X Distances from the Wavemaker. 
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Figure 7: Size of Area with ±10% Uniformity for T = 1.20s and 6 = 30° 

powerful tool that can enhance the model testing capability of a multidirectional 
wave basin. Further work is planned at NRC to evaluate the Dalrymple method 
experimentally in a basin with a sloping bottom. 
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