
CHAPTER 30 

Time-Dependent Mild Slope Equation for Random Waves 

Yasuhiro Kubo* Yasuo Kotake2, Masahiko Isobe2 

and Akira Watanabe2 

A time-dependent mild slope equation is derived to simulate the deformation 

of irregular waves due to refraction, diffraction and breaking. It is based on 

Berkhoff's mild slope equation, but the resulting model is capable of simulating 

the time evolution of irregular wave profiles. The validity of the model is veri- 

fied through comparisons with experimental data in a wave flume. Application 

examples for two-dimensional problems are given. 

1     Introduction 

The mild slope equation derived by Berkhoff (1972) has widely been used in 

the numerical calculation of refraction and diffraction of regular waves. However, 

it is well known that the randomness of sea waves has a significant effect on the 

wave height distribution due to refraction and diffraction. 

In this paper a governing equation for calculating the time evolution of random 

waves due to refraction and diffraction is derived on the basis of the mild slope 

equation. An energy dissipation term is added to model the wave breaking. To 

examine the validity of the equation, the results of calculation are compared with 

measurements in a wave flume. Examples of model application to two-dimensional 

random wave computation are also given. 
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2     Derivation of Governing Equation 

The mild slope equation derived by Berkhoff (1972) is written as 

V{ccgVfj) + k2ccgfj = 0 (1) 

where c is the wave celerity, cg the group velocity, k the wave number, and V the 

horizontal gradient operator. The quantity rj denotes the complex amplitude of 

the water surface elevation, by which the water surface elevation r) is expressed as 

rj = Re^e-""'] (w: the angular frequency). In the above equation, the quantities 

ccg and k2ccg depend on the frequency, which restricts the applicability of the 

mild slope equation to waves with a single frequency. 

For random waves, the water surface elevation is expressed as the superposition 

of component waves : 
oo 

r, = MY,f)me-iUmt] (2) 
m—1 

where u)m is the angular frequency and r)m the complex amplitude of the m-th 

component waves. 

To apply the mild slope equation to the analysis of random wave transforma- 

tion, we define a variable r) such that 

r, = Mi*-*•] (3) 

where UJ is a representative angular frequency such as the peak frequency. Com- 

paring this with Eq. (2), we have 

DO 

V = MY,Vme-iat] (4) 

and 

fu = ^me-,Au""i (5) 

where Ao>m = wm — UJ. The variable fjm is a function of time t, for which 

—j- = -iAujmrjm (6) 

The quantity fjm is a function of time t, it is a solution of Eq. (1) as well as f}m. 

Therefore, we can rewrite Eq. (1) as 

V[(ccs)mV7?m] + {k2ccg)mfjm = 0 (7) 

Since the quantities (ccg)m and (k2ccg)m depend on the angular frequency ojm, it 

is not possible to superimpose Eq. (7) for all component waves and calculate r) 
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directly. Therefore, we modify Eq. (7) and change the quantities ccg and k2ccg 

into constants independent of component angular frequencies. 

If we expand the quantities (ccg)m and (k2ccg)m into Taylor series of Awm 

and eliminate powers of Atjm using relations such as —iAa;m77m = dfjm/dt and 

(—iALJm)27]m = d2fjm/d2t, we can obtain an equation in which all the quantities 

can be determined from the representative frequency only. 

For example, by truncating the Taylor series at the first order, the first and 

second terms in Eq. (7) are expressed as 

dicc
S), 

du 
(cCg)mVvm =  [cc-g + ^±°L^m]Vf)m = CC-^Vm + *^ V     ^ (8) 

d(k2ccg 

= ccs yrirn + .d{ccg 

du) 

,Vm + 

M dfjm\ 
dt) 

,d(cc 

du 
g)df)m 

|    dt 
'm\7]m = F CC£ (k2ccg)mfim = [k2ccg + —-^-Awm]?7m = k2ccgfjm + i—j-1—^f- (9) 

where all the quantities ccg, d(ccg)/duit k2ccg and d(k2ccg)/duj are constants. 

Substitution of Equations (8) and (9) into Eq. (7) yields 

V(aV^m) + iV&8V(^)] + k'arjm + t^ = 0 (10) 

a = ccg (11) 

P = ^[-2(1 -n)+ — (2n - 1){1 - (2n - 1) cosh 2kd}} (12) 
K Aft 

7 = kc[2n + — (2fi - 1){1 - (2n - 1) cosh 2fcd}] (13) 

n= 1/2(1+ 2JW/sinh2iW) (14) 

Then, superposition of Eq. (10) for an infinite number of component waves yields 

V(aV»j) + ;V[£V(|J)] + War} + i^ = 0 (15) 

which is termed as a time-dependent mild slope equation for random waves. For 

random incident waves, fj along the boundary is determined by Eq. (4), and then 

fj in the calculation domain can directly be calculated by Eq. (15). 

The above expansion of the quantities ccg and k2ccg into the first-order Taylor 

series of Ao>m is equivalent to approximating them as linear functions of u. Fig. 1 

illustrates the accuracy of the approximation. As seen in Fig. 1, the error is 

insignificant when the deviation of the frequency from the representative value is 

small. 
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Fig. 1: Accuracy of the approximated quantities 

3     Modeling of Wave Breaking 

To incorporate energy dissipation due to wave breaking, an empirical energy 

dissipation term based on the model presented by Isobe(1986) is added to Eq. 

(15): 

V(aV^) + tVt8V(^)j + Pa(l + ifD)f, + ry(l + ifD)^ = 0 (16) 

where f^ is the energy dissipation coefficient. 

It is convenient to evaluate fD by using spatial wave profiles because time series 

of the spatial profile are obtained as a solution of Eq. (16). In the procedure, we 

first divide the spatial wave profiles into individual waves by the zero-up crossing 

method from offshore to onshore as shown in Fig. 2. 

To judge the breaking of individual waves, the amplitude to water depth ratio, 

wavel wave 2     :wave3:      wave4 
a   < • $ i g 

Fig. 2: Evaluation of energy dissipation function due to wave breaking 
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7, is introduced as follows: 

7=\f,\ld (17) 

where \fj\ is the amplitude at the wave crest and d the water depth. If 7 is greater 

than 7;, which is a critical value of wave breaking and determined by Eq. (18), 

the individual wave is judged to be breaking. 

76 = 0-H (18) 

•y'b = 0.53 - 0.3exp(-3i/d/L~0) + 5 tant /3exp{-45(y^/io - 0.1)2} (19) 

where Lo is the representative wavelength in deep water and tan/3 the bottom 

slope. The value 0.8 in Eq. (18) is introduced to consider that random waves are 

easier to break than regular waves. After breaking, if 7 becomes smaller than 7,. 

which is a critical value of wave recovery determined by Eq. (20), the individual 

wave is judged to have recovered. 

7r = 0.135 (20) 

To evaluate the spatial distribution of the energy dissipation coefficient, we 

first determine /cmax a^ each crest of breaking waves by Eq. (21), then obtain 

the energy dissipation coefficient fjj by interpolating /nrnax linearly as shown in 

Fig. 2, and finally calculate the water surface profile at the next time step. 

K j     1 / ^y  .—  /y 

Wx = -tan/3W—W  (21) 
2 V k>d V 1, - IT 

7, = 0.4 x (0.57+ 5.3 tan/3) (22) 

where k0 is the representative wave number. The same procedure is repeated for 

arbitrary time steps. 

4     Boundary conditions 

The open boundary condition, which allows outgoing waves to propagate freely, 

is not easy to implement. In addition, along the offshore boundary, the incident 

waves should be introduced. 

We apply a method presented by Ohyama et aZ.(1990) to the open boundaries. 

In the method, the energy of outgoing waves is absorbed in the energy dissipation 

layer which is added outside of the boundary. To introduce the incident waves 

from the offshore boundary, terms due to an exciting force are added on the right 

hand side: 

V(aVi)) + *V[£V(|?)] + Pa(l + ifD)rj + ij(l + zfD)^ 

= V(aV7*n) + tV[£V(^p)] + Pa(l + »/D)?m + 17(1 + ^D)~   (23) 
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where fj-m is the complex amplitude due to the incident waves. The above equation 

is obtained by substituting component, 7?out = fj — ^;n, due to outgoing waves for 

fj in Eq. (16). 

5     Application and Results 

Time-evolutional solutions can be obtained from Eq. (16) by using a finite 

difference method. 

Numerical calculations for the present equation are carried out for one-dimen- 

sional cases by using Crank-Nicholson method. Figures 3 and 4 show the result 

for two component waves with slightly different frequencies, 0.9w and l.lw (W: 

the mean angular frequency). Fig. 3 is for deep water and Fig. 4 for shallow 

water.   Spacial wave profiles are shown at four time steps from the top to the 

Fig. 3: Propagation of two-component waves (deep water) 

Fig. 4: Propagation of two-component waves (shallow water) 
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X= Ocm 

Fig. 5: Wave flume and bottom configuration 

bottom with an interval of a half of the mean period. It seems in Fig. 3 that 

waves propagate with the wave celerity c, while wave groups propagate with the 

group velocity cg. This can not be reproduced by the previous time-dependent 

mild slope equation. 

Results of numerical calculations are compared with experiments for the wave 

transformations on a slope to confirm the validity of the present equation. The 

data were obtained by Watanabe et al.(1988) in a wave flume shown in Fig. 5. 

Figures 6 and 7 compare the measured and calculated wave height variations of 

random waves on a beach with a slope of 1/30 . The offshore boundary condition 

is given at x = —40cm and the shoreline is located at x = 1000cm. Fig. 6 is for 

the plunging-breaker (case 1), while Fig. 7 for the spilling-breaker (case 2). 

The peak frequency fp and the significant wave height H-i/3 of the incident 

waves are O.SHz and 5.4cm for case 1, and 0.75Hz and 9.2cm for case 2. In the 

numerical calculations, the incident waves are given by synthesizing component 

waves with frequency 0.25/p ~ 2.5/p, which were extracted from the measured 

water surface elevation at the offshore boundary by using FFT. The grid size Aa; 

is 10cm and the time interval At is 0.02s. 

In Fig. 6, the calculated significant wave height variations does not agree well 

with the measured one near the breaking point since the present equation is linear. 

However, the root mean square of the water surface variation is predicted well 

due to the empirical formulation of the dissipation term. 

Fig. 8 compares the measured and calculated water surface fluctuations for 

the case 2. Fig. 8 (a) is for the offshore boundary, Fig. 8 (b) for the offshore 

zone, Fig. 8 (c) for the average breaking point and Fig. 8 (d) for the surf zone. 

As seen in Fig. 8 (b), a good agreement is obtained in the offshore zone, but 

in Fig.  8 (d) the difference is large.  Owing to the linearity of the equation, the 
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Fig.    6:   Comparison of the measured and calculated wave height variations 

(case l:Hi/3 = 5.4cm, fp = 0.5Hz) 
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Fig.    7:    Comparison of the measured and calculated wave height variations 

(case 2:H1/3 = 9.2cm, fp = 0.75Hz) 

present equation can not reproduce the non-linear properties such as skewness of 

the wave profile. However, the transformation of wave groups is well reproduced. 

As examples of application to two-dimensional problems, wave fields on a uni- 

form slope and around a detached breakwater are calculated by the present equa- 

tion. For two-dimensional problems, the ADI method is used because it reduces 

the memory size and computation time. 

Fig. 9 shows the calculation domain. The contour lines are shown for the 

energy dissipation coefficient fp in the energy dissipation layer. The layer is taken 

thicker along the offshore boundary than along the onshore boundary because of 

the difference in wavelengths. The grid size Al is 2m and the time interval At is 

0.02s. 
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Fig.   8:   Comparison of the measured and calculated wave surface fluctuations 

(case2) 

Numerical calculations are carried out for two cases: for regular waves and 

multidirectional irregular waves. The wave period or significant wave period is 

6s, and the wave height or significant wave height is lm in deep water. 

The frequency spectrum of the incident irregular waves is of the Bretshneider- 
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Pig. 9: Calculation domain 

Fig. 10: The frequency spectrum of incident waves 

Mitsuyasu spectrum and the Mitsuyasu-type directional distribution function is 

used with Srnax = 10. The incident irregular waves are given by the double sum- 

mation method in which 13 frequency components and 15 directional components 

are used. High frequency components are cut as shown in Fig. 10, because the 

applicability range of the present equation is restricted within a narrow band. 

Figures 11 (a) and 11 (b) compare the analytical and numerical solution of 

wave height variations of component waves due to refraction. Fig. 11 (a) is for 

the longest wave period 8.09 s and Fig. 11 (b) for the shortest wave period 3.89s. 

In these figures, the calculated solutions agree well with the analytical ones. 

Figures 12 (a) and 12 (b) show the results of the numerical calculation of 

the wave field around a detached breakwater for regular and irregular waves, 

respectively. Figures 13 and 14 show the wave height variations along the X- 

and Y-axis. As seen in these figures, the distribution of wave height is smoother 
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Fig.   11:  Comparison of the analytical and calculated wave height variations of 

component wave 

(a) regular wave field (b)  irregular wave field 

Fig.  12: Comparison of the regular wave field and irregular wave field around a 

detached breakwater 

for the irregular waves because of the frequency and directional distribution. 

For the regular waves, nodes and anti-nodes are clearly seen. The asymmetrical 

distribution of wave height for irregular waves is due to a statistical variation 

because the significant wave height is obtained by using #1/3 = 4.0047?rms, where 

?7rms is the root mean square of the water surface elevation. 
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Fig.   13:   Comparison of wave height variations of regular and irregular waves 

along the s-axis 
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Fig.   14:   Comparison of wave height variations of regular and irregular waves 

along the y-axis. 
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6     Conclusion 

A time-dependent mild slope equation for random waves was derived from 

Berkhoff 's mild slope equation. An advantage of the present equation is that it 

allows to calculate the time evolution of the random wave transformation due to 

refraction and diffraction and can easily incorporate a breaking wave model. The 

results of numerical calculations were compared with theoretical predictions and 

laboratory data, which confirmed the validity of the present equation. 
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