
CHAPTER 27 

AN ADDITIONAL PARAMETER FOR THE ZERO CROSSING WAVE DEFINITION 
AND ITS PROBABILITY DISTRIBUTION 

by A. Kimura1 and T. Ohta2 

ABSTRACT 

In this paper, the distance from the mid point between a wave trough and a consecutive wave crest 
of a zero-crossing wave (a position of wave height bisection) to the still water level is proposed 

to be an important zero-crossing wave property. Its roles on certain physical properties of the 
zero-crossing waves are shown through experimental data in the first part of the paper. Its 
probability distribution is introduced, in the second part, from the combined probability 

distribution of the amplitudes of consecutive wave trough and crest of irregular waves. In the last 
part, the theoretical probability distribution for this property is verified with numerically simulated 

data for many types of wave spectra. 

1. INTRODUCTION 

The zero-crossing method has been used to split the irregular wave profile into zero-crossing 

waves. The overall physical property of irregular waves is evaluated by connecting the relevant 
physical properties of individual waves and the probability of wave heights and periods. For 

example, the probability distribution of random wave forces (Kimura et al., 1983) is given as 

p(f)df=       p(H,T)  dHdT (1) 
Js 

p(H,T) is the combined distribution of wave height H and period T. S is the region in which 

f =s g(H, T) = f + df (2) 

where g(H,T) gives the wave force f of a periodic wave for the wave with H and T. 
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The physical properties of the zero-crossing wave are approximated usually by those of a periodic 

wave with the same wave height and period. The draw back of this method ,some times, is that the 

two properties H and T are not sufficient to express the overall physical wave properties, since the 
measured and calculated probabilities have shown apparent differences in some physical properties. 
Therefore some studies have tried to apply supplemental wave properties such as slope of the 

fore-side face of waves in the examination of wave breaking (Holthuijsen and Herbers, 1986, for 
example). Among these, important parameters which may affect the physical properties of the 

zero-crossing wave are listed by the PIANC working group (list of sea state parameters; 1987). 

The parameter proposed in this study is not involved in the list but may exert an important effect 

on the waves in a shallow water region. That is a position of wave height bisection (mean position 
between the wave crest and trough of a zero-crossing wave). 

Two waves in Fig.l have the same wave height and period but different crest heights. In the 

ordinary definition, these two waves are recognized as having the same property. Figure 2(a) shows 
the wave height at the breaking point on 1/20 slope (Seyama et al., 1988). H, Ln and h are the 

wave height, deep water wave length and still water depth. Subscript b shows the value measured 
at the breaking points. The same data (H/H,,) are plotted against h* in Fig.2(b) instead of h , in 
which h* is the distance from the bottom to the center between wave crest and trough (Fig.l). 

The scattering of data in Fig.2(a) reduces very much in this figure, therefore, h* works more 
effectively as a water depth than h. This h* is given by the sum of the still water depth h and the 

distance d from the still water level to the position of wave height bisection (PWHB; Fig.l). In the 

next section, the probability distribution for d is introduced theoretically and the result is 

verified through numerically simulated irregular waves. 

2. The definition of d and its characteristics 

2.1 Definition 

The distance d from the mean water level to PWHB is given by 

d=(ih-Ti2)/2 (3) 

in which T)i and r\2 are the amplitudes of the wave trough and the consecutive wave crest, 
respectively. From a definition of the zero-crossing wave, we got -H/2 < d < H/2. 

2.2 Characteristics of d 
The numerically simulated values of d are shown first. The FFT method is used to calculate 

irregular wave profiles for the Wallops type wave spectrum which is given by 

S(f)=(f/fp)-
mexp[m/4(l-(f/fpr

4j] (4) 

where fp is 1.0Hz and the interval of the calculated wave profile, At is 0.05s. in the numerical 

simulations. The 7 different values for the shape parameter m (4, 5, 6, 8, 10, 15, 20) in eq.(4) are 

used in the calculations. The zero-down-cross method is applied in the irregular wave definition, d 
is calculated applying eq.(3) for each wave. Figures 3 (a), (b) and (c) show the calculated relations 
between d/H and H/Hm ( Hm is the mean wave height) for three values of m (5, 10, 20) in this 

order. While the spectrum is wide (m=5) d/H distributes up to its limit (-H/2, H/2) where H/Hm 
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Fig. 1   Zero down cross waves with common H and T 

Vhb 

SAo 

Fig. 2(a)   Breaking limit Fig. 2(b)   Breaking limit 
(modefied water depth) 

<1.0. However the fluctuation decreases at the larger values of H/Hm. When m is large ((b),(c)) the 

fluctuation decreases except for the very small wave height region. From these, the larger the 

wave height or the narrower the wave spectrum, the more zero-down-cross waves tend to have 

symmetric profiles. 

3. The probability distribution of d 

3.1 Two-dimensional Rayleigh distribution 
As shown in eq.(3), d is half the difference between T|i and T]2 . If these two values are independent 

(no correlation), the probability distribution for d is easily given as 
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p(d) = Ml+d dhi (5) 

where p(.) is the probability distribution. The time interval between consecutive wave trough and 
crest is about half the mean wave period on the average. Two values on the wave profile with such 

a distance inevitably have a correlation. Therefore, this correlation property has to be taken into 
account when the probability distribution for d is considered. However the theoretical 

probability distribution of ri; (i=l,2) has not yet been determined. The amplitude of the envelope 
for the wave profile at the same position oft) i has been used instead (Tayfun et al., 1989) with an 

error of order v in the noise theory, where v is given by 

v =( m0m2/m^- l)2 

and 

m„ = f" S (f) df 

(6) 

(7) 

in which S(f) is the power spectrum of waves. 

The present study also used the above approximation. Since the theoretical probability 

distribution for envelopes is the Rayleigh distribution (Rice,1945), the combined distribution for 

ill and T]2 is given by the 2-dimensional Rayleigh distribution (no non-linearlity of the wave is 
considered in the present study). Expressing the amplitudes of wave envelopes at the position of r|i 

andT)2 as Ai and A 2 respectively, Eq.(3) is approximately expressed as, 

d=(Ai-A2)/2 (8) 

The   probability distribution for the normalized amplitude Sy =A;/Am (i=l,2), whereAmis ; 
mean amplitude, is the Rayleigh distribution. 

P (li) = -%i exp 
4 

(9) 

The combined probability distribution of the numerically simulated li and I2 agrees well with the 
2-dimensional Rayleigh distribution, 

p(li,§2); 
4(1-K2) 

exp 
4 (l - K2) 

Io "Klrl2 

2(l-K2) 
(10) 

in which Io is the 0-th order modified Bessel function of the first kind, and K is the correlation 

parameter which is calculated as follows, 

=V(piTI2)/ m0 (11) 

where 
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r CO 

i=       S(f) cos23t(f-F)l df 
Jo 2 

S(f)sin2Jt(f-f)l df 

f = mi/ mo (12) 

t/2 is the time interval between Ai and A2. Tm/2 is used for this interval in this study where Tm 

is the mean wave period. This parameter is explained briefly in 3.3. 
Figure 4 shows the comparison between numerically simulated combined frequency distributions 

of 1J and '%2 and eq.(10) (solid line). The values for m in eq.(4) is (a) 5, (b) 10, and (c) 20 

respectively. When m=5 the spectrum is that for a fully developed sea condition. Excellent agreements 

are obtained for all cases. 

3.2 The probability distribution of d 
Since Ai and A2 are amplitudes of the envelope at the consecutive wave trough §1 and crest §2, the 
wave height is given approximately as, 

H = Ai + A2 (13) 

Both sides of eq.(13) are divided by Hm (=2Am, Am; mean  amplitude  of the envelope) to 
normalize, 

S = (5i + Sz)/2 

in which   li /2 = As/Hm (i=l,2) and ?=H/Hm 

From eq.(14), 

12=25-1! 

Substituting eq.(15) into eq.(10), the combined distribution of li and C is obtained. 

»(§i,y= r -r-^ exp 
V       '        2(1 -K2) 

.tH±&zMl 
4(l-K2) 

Integration of eq.(16) brings the probability distribution fort 

p(Q=l   pfin.Qdi, 
Jo 

h 
HK%l(2£-gl) 

2(l-K2) 

(14) 

(15) 

(16) 

(17) 

Since the analytical expression of this integration is difficult, a numerical calculation is used. 

The region of the integration is given from the definition of   §1, §2 > 0. To normalize the region, 
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eq.(8) is divided by Hm . 

s = (ii-l2)/4 

Substitution of eq.(15) into eq.(18) brings 

8=(Si-£)/2 

then 

h = 25 + i, 

Substituting this relation in eq.(16), the combined distribution of 8 and t, is obtained. 

385 

.(o/^^li62) 
1 -K2 

From the definition, 

- H/2 < d < H/2 

exp 
jt (t2 + 452 

2(1-K2) 
Io 

HK(5
2
-48

2 

TfT^2) 

we obtain 

x/2<d<y2 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

Since 8 in eq.(21) changes the range following the change of X>, the new parameter which is given 
in the next equation is introduced. 

e = 8 / rQ (=d/H) (24) 

e takes the value only from -1/2 to 1/2 regardless oft. Substitution of this parameter in eq.(21) 

we obtain, 

p (e ,q = —5-i '- exp v      ; 1 - K2 

:?2(? + 4i 

2(1- 
Io 

JIK5
2
(1-4( 

2(l-K2) 

Tlie conditional distribution of E for given t,, is calculated as 

p('|S) = p(<a)/p(S) 

(25) 

(26) 

3.3 Time interval between Ai and A2 

K which is calculated by eq.(ll) plays a very important role in this theory. The representative 
frequency f is usually given by eq.(12) and the time interval t/2 between Ai and A2 is 
approximately given by the mean wave period. Two definitions for the mean wave period have been 

used. They are 

T01 =mo /mi 

T02 = f•o / m2 
(27) 
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The numerical calculations with different values of m in eq.(4) show thatTo2 is always closer to 
the calculated mean zero-crossing wave period than To i. Therefore T02 is used for Tm in this study. 

4. Verification of the theoretical distribution 

Figure 5 shows the comparison between p(e | £) and the numerically simulated values of e for the 

several different wave spectra (a) m=5, (b) m=10, (c) m=20. The solid curves shows the theoretical 

distributions and the columns are the frequency distributions of the numerically simulated data of e. 
Calculated values of e which fall in the shown intervals of t are sorted into ranks of width A e =0.05 

from e=-0.5 to 0.5. The agreement between the theory and the simulated data are good in all cases 

except for the very small part oft- This discrepancy in the region of small t, may be induced by the 
value of K used in the calculation of eq.(12), since the time interval between the consecutive wave 

trough and crest for a small wave is smaller than the average value. However when t is larger than 

0.6—0.7, the theoretical distributions always show good agreements with the data. Fig. 6 shows 

the comparison between the theoretical standard deviation (solid line) for e which is given by 

(28) 



388 COASTAL ENGINEERING 1992 

0.4-f 
0 

0.3H    ° 
o ° 

m=5 

0.0        0.5        1.0        1.5        2.0        2.5 
/\      c H/Hm (a) m=5 m 

°-°-\ 1 1 1 1 r 
0.0        0.5        1.0 1.5        2.0        2.5 

H/Hm 
(b) m=10 m 

0 

0.4- 
m = 20 

0.3- o 
o 

0.2- 

ON. 

0.1- o o^»^^ 

"^~"Q~»-0-Q^ O   - 

0.0- I I           I I i             i 

0.0        0.5        1.0        1.5        2.0        2.5 
H/Hm 

(c) m=20 m 

Fig. 6   Standard deviations of E 



ZERO CROSSING WAVE 389 

4 - 

0 -i, !i£ 

£=0.55 

•0.4 0.0 0.4    e 

4 - 

2 - 

<M 
-0.4 0.0 

£=0.95 

"I ' 
0.4     E 

P 

4 H 
£=1.45 

1 ' 1 • I ' 
-0.4 0.0 0.4    E 

2 - 

£=1.95 

—, 1 1 . 1 . 

-0.4 0.0 0.4    E 

Fig. 7   Comparison between p(e|£) and the normal distribution (m=5) 
(solid line; P(E|£), dotted line; the normal distribution) 

0.25-I 
O 

0.20- 

0.15- 

0.10- 

0.05- 

0.00-1 i 1 1 r 
0.5 1.0 1.5 2.0 2.5 3.0 

H/Hm 

Fig. 8   Theoretical standard deviation for p(e|£) 



390 COASTAL ENGINEERING 1992 

where 
•1/2 

72 =       E
2
 p ( e ! r, )   dE 

;-i/2 

(29) 
1/2 

E p ( E | ^ )   de 
1/2 

and the standard deviations of the numerically simulated data (white circle). Except for the smaller 
part than t,= 0.6—0.7 their agreements are good. As can be observed in fig. 5, the theoretical 

distribution p(e | £) has a very close form to the normal distribution. Fig.7 shows the comparisons 

between p(e 11,) (solid line) and the normal distribution (dotted line) of the zero mean and the standard 
deviation calculated from eq.(28). The probability distribution p(fi 11,) used in the calculation is that 

for m=5 (eq.12) in this case. The agreements between p(e | £) and the normal distribution always 

agree well regardless of the spectrum width when the calculated value of the standard deviation by 
eq.(28) is used beside zero mean. Fig.8 shows the theoretical standard deviation for p(e | ^) for the 

several different spectra (eq.4). 

5. Conclusion 

Additional property for the zero crossing wave is proposed newly in this study. That is the distance 
from the mean water level to the mean position between the consecutive wave trough and crest. Its 

theoretical distribution is introduced and compared with the numerically simulated data. The theoretical 

distribution shows excellent agreement with the numerically simulated data regardless of the spectrum 
width. The theoretical distribution has a very close form to the normal distribution and can be 

approximated with that distribution, if the standard deviation shown in Fig.8 and the zero mean is 
applied. 
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