
CHAPTER 13 

THE INTERACTION OF DEEP-WATER GRAVITY WAVES AND 
A CURVED SHEARING CURRENT 

MARIUS GERBERi 

1. ABSTRACT: 

The interaction of steady deep-water gravity waves with a pre- 
existing large-scale curved current has been investigated. In 
order to investigate the influence of the curvature of the current 
on the wave field, the current field was represented by a section 
of an annular current with a particular non-dimensional radius R. 

As a first approximation the interaction of a family of linear 
axi-symmetrical waves and the current was investigated. Exact 
linear ray solutions were obtained which, in the limit when R - «>, 
reduce to the analytical straight current solutions of Longuet- 
Higgins and Stewart (1961). 

2. INTRODUCTION: 

The emphasis of this paper is on the linear theory of the 
interaction of deep-water waves, generated on still water, and 
pre-existing large scale currents. Longuet-Higgins and Stewart 
(1960, 1961) were the first to give an accurate description of 
linear wave-current interactions and introduced the concept of 
radiation stress. Further contributions in our understanding of 
the interaction of linear waves and large scale currents came 
from, among others, Whitham(1962), Bretherton and Garrett(1968) 
and Peregrine (1976), who examined a number of different 
situations. 

In almost all of the above studies the analysis was confined to 
two special situations of steady currents, namely (i) straight 
currents, varying with distance along the stream or (ii) straight 
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currents varying across the stream. Exact linear solutions for 
these situations were derived by Longuet-Higgins and Stewart 
(1960, 1961). 

The purpose of this paper is to extend the linear theory of the 
interactions of waves with a large scale current to more general 
current situations. Here we extend the range of known linear 
solutions by considering the simplest formulation of interaction 
with a curved current, namely steady axi-symmetrical waves on an 
axi-symmetrical annular current. This restriction simplifies the 
mathematics, but even so, solutions have been found for a wide 
range of cases. 

3. MATHEMATICAL FORMULATION 

Consider, in polar co-ordinates, an annular current of the form 

U = u>(r) e8 (3.1) 

where r and 6 are the polar coordinates and e^ is a unit vector in 
the 6 direction. Equation (3.1) describes an axi-symmetric 
current with arbitrary velocity profile which is only a function 
of the radial distance. 

For the annular current (3.1) the basic equations of wave 
kinematics are given by: 

DISPERSION: 

gk or c2 = g/k, k (3.2) 

where a  is the intrinsic frequency of the waves and k is the cor- 
responding wavenumber. The celerity of the waves is denoted by c. 
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DOPPLER SHIFT: 

The apparent frequency, i e the frequency of waves passing a fixed 
point, is 

u = a(k) + k.U 

= a + k sin a Uj 

k[c + Ug  sin a], (3.3) 

where a is the angle between the wavenumber k and the unit vector 
er in the radial direction (see figure 1). 

ANGULAR WAVENUMBER: 

rk sin a, (3.4) 

with m a constant. 

Non-dimensional variables may now be introduced to simplify the 
solutions. Consider a wave ray initially outside the influence of 
the current and denote, when U^ = 0, the wavenumber k by kQ and 
the wave celerity c by c0 A scaled wavenumber K = k/k0, as well 
as a scaled celerity C = c/c0, may then be introduced. Also let 
V = U^/CQ denote the scaled current velocity. 

In order to depict the outside (or inside) radius of the annulus 
at the point of entry of the ray, let the radius of the current 
at this point be rn. Assume further that U^ = 0 just outside (or 
inside) the annulus, i e where r - TQ. This suggests a logical 
choice for the non-dimensional radius is R = r/rQ. 

From the symmetry of the current it is clear that, without loss of 
generality, a polar angle 6Q = 0 can be selected for the point of 
entry rp. Since a = <j> - $, where <t> is the angle between k. and g_j, 
«n = (0- 0)n> and the angle between k and the x-axis at TQ IS 
then </>Q  (see figure 1). 
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igure 1 : Definition diagram of rays interacting with an annular current. 
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Equations (3.3) and (3.4), by using (3.2), then become: 

R cosec <j>n 
C = — (3.5) 

R cosec <f>Q  " v 

R cosec tin  - V n2 

R cosec 
(3.6) 

R cosec #o 
sin a =  (3.7) 

[R cosec <j>Q -  Vr 

so that, for a current field given by V(R), the wave properties 
may be found from (3.5), (3.6) and (3.7). 

We now also introduce the description that for rays initially 
outside the annulus, which then penetrate the circular current at 
R = 1, so that R < 1 within the annulus where V + 0, the term 
convex current (to the direction of wave approach) will be used. 
Conversely, concave currents have waves that originate inside the 
annulus before they penetrate the annulus at R = 1. R will then 
become greater than unity within the annulus where V + 0. Figure 
2 is a schematic representation of convex and concave currents as 
defined above. 

4. SPECIAL SOLUTIONS 

It is clear that the right hand side of equation (3.7) can have a 
magnitude greater than one for a range of V values This defines 
upper and lower limits to V for which solutions exist. 

The critical velocities bounding the region without waves are: 

R cosec 0O ± (R cosec ^0)^      (4.1) 

At these critical velocities a = 90° so that the waves travel 
parallel to the current. In practise the rays are tangent to a 
caustic curve, concentric with the eddy, and reflection of the 
rays result. It is important to note that with this model the 
wave motion along rays is entirely reversible. Note also that 
"reflection" in this paper imply a = 90° and V f    0. The 
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corresponding circular caustic curve is thus at a fixed radius 
from the origin within the current. For axi-symmetrical wave 
fields caustics can, however, also occur in the absence of 
"reflection". This is when the wave rays cross within the core of 
the annulus and although a = 90°, V = 0. 

For currents opposing the direction of wave approach two other 
refraction configurations, at other a angles, may also be 
identified. "Blocking" is when the component of the group 
velocity in the direction of e^, Cg sin a, becomes equal to |u^| 

Cg sin a + Ue  = 0 (4.2) 

and the waves are blocked in the e« direction. As in the case of 
"reflection" a fixed "blocking" radius from the origin may also be 
identified. 

The second, or "stopping", configuration results when the local 
group velocity of the waves becomes equal and opposite to the 
convection velocity of the current: 

Cg + Ufl sin or = 0 (4.3) 

The crests of the waves are refracted to be parallel to the ray 
direction and the waves are stopped in the k direction. As 
before, a fixed "stopping" radius from the origin may be 
identified. 

By using equation (3.7) the resultant a values may be contoured in 
the (R cosec 0n, V) plane. Superposition of the current profile, as 
a function of the radius and the initial angle, V(R cosec <j>n), 
then provides an easy mechanism to study the variation of the 
waves. For equation (3.7) the contours of figure 3 are obtained. 
The intersection of the various contours with the R cosec 0Q axis 
then indicate the cosec <t>n values of the initial 0n entry angles, 
that is where R = 1 ana V = 0. As before, since for concave 
(convex) currents R > 1 (R < 1), the abscissa values in figure 3 
will be increasing (decreasing) from the initial cosec 0Q value 
when rays penetrate the annulus from the concave (convex) side. 

The a = 90° contour in figure 3 is of particular interest since it 
represents the linear caustic curve where reflection of the wave 
rays take place. Other important contours in figure 3 are those 
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which indicate where the rays are blocked or stopped by the 
current. These contours were obtained from equations (4.2) and 
(4.3). It is clear that only the lower branch of the blocking 
contour in figure 3 is relevant. Figure 3 also shows that for 
waves initially on still water, for both concave and convex 
currents, the blocking condition will always occur before the 
stopping condition can be satisfied. Furthermore, in practical 
application the linear stopping velocity condition will only be 
satisfied for waves of relatively short period. This is due to 
the relatively large opposing current values needed for (4.3) to 
apply. 

5. NUMERICAL RAY SOLUTIONS 

Waves interacting with a shearing current can, in general, exhibit 
four different types of behaviour. That is, the waves can (i) 
penetrate the current, (ii) be reflected by the current, (iii) 
become blocked by the current or (iv) are stopped by the current. 
Whereas all four these types of behaviour can be expected from 
waves opposed to the flow direction of the current, waves that 
propagate in the same direction as the current can not be blocked 
or stopped by the current. 

The information contained in figure 3 is very useful since it 
allows us to illuminate the different features of straight, 
concave and convex shearing currents. For example, for given 
initial angle of incidence, <j>Q, different annular current 
distributions of the form (3.1) may be superimposed on the 
(R cosec 0Q, V) plane and the variation of the waves followed 
graphically. Various numerical ray simulations of an axi- 
symmetrical wave field interacting with an annular current of the 
form (3.1) are shown in figures 5 - 11. The point of entry of the 
rays in each of these figures is marked by "E" while the maximum 
current velocity within the annulus is indicated by a dashed line. 
The wave crests are also shown in some of these figures. For each 
of these figures the corresponding parabolic current profile is 
shown in figure 4. In particular instances where the waves are re- 
flected by the current the relevant part of the current profile is 
indicated by a bold line. Also, the position on the ray where the 
waves are blocked, reflected and stopped by the current are shown 
by the filled circles marked "B", "F" and "S" in figures 5 - 11. 

Figure 5 shows a family of rays penetrating the following concave 
annular current marked (a) in figure 4. The initial angle between 
the ray and the x-axis, 0Q, was taken as 45°, corresponding to 
R cosec 0O 

= 1-41. The maximum value of the parameter V occurs at 
the dashed centerline-radius of the annulus and for this example 
vmax " °-28- 

Figure 6 is an example of two rays interacting with the opposing 
convex current marked (b) in figure 4. The initial angle <j>n  = 120° 



INTERACTION OF GRAVITY WAVES 193 

so that R cosec 0Q = 1.15. Only the bold part of the profile is 
relevant since the waves are reflected by the current. The filled 
circles in figure 6 correspond to the positions where the waves 
are blocked before being reflected by the current. Since the wave 
motion along the rays are reversible, the blocking contour is 
crossed twice (figure 4) before the waves exit the annulus. 

It is interesting to note that on a straight opposing current, 
such as the current marked (c) in figure 4, reflection of the 
waves is not possible. This is also shown in figure 7. As before, 
the filled circles indicate the positions where the waves are 
blocked and stopped by the current. The waves are only stopped at 
relatively large values of V; in this example Vmax = -0.96. 

Figure 8 is another example of waves interacting with an opposing 
convex current. Here the dimensionless current velocity, V, is 
such that the waves are both blocked and stopped before they 
reflect. The initial angle of incidence is, similar to that of 
figure 6, taken as <j>a =  ^20° and the relevant current profile is 

max marked (d) in figure 4. The value of Vm,x = -0.96 

The current profile marked (e) in figure 4 was used to generate 
the rays in figure 9. This profile is similar to that used in 
figure 8, except that here the waves approach the opposing current 
from the concave side. 

Waves may also be trapped by an annular current. Waves generated 
on still water, before interacting with a concave current, may 
undergo multiple reflections within a certain radius and thus 
become trapped inside the annulus. Figure 10 is a trapped ray 
solution corresponding to the current profile marked (f) in figure 
4. The angle of initial incidence 0O = 45° while Vmax = 0.64. 

For this annular configuration, and for waves initially inside the 
annulus, while propagating in the same direction as the current, 
it can also be seen from figure 4 that profiles that reach up to 
the upper branch of the caustic line a = 90° may have trapped 
waves on them for chosen initial conditions. Figure 11 is an 
example of such a single trapped ray. The bold part of the current 
profile marked (g) in figure 4 corresponds to the ray solution 
shown in figure 11. It is clear that relatively large V values 
are needed to trap the waves. In this example Vmax =1.4. 

6. CONCLUSIONS 

Exact linear solutions for the interaction of steady, axi- 
symmetric deep-water gravity waves and an axi-symmetric annular 
current have been derived. Two important non-dimensional 
parameters, namely a current velocity parameter, V = U^/CQ, and a 
radius-angle parameter, R cosec <j>Q,    where R = r/rQ, were 
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identified. For R > 1 concave currents were considered while 
convex currents have R < 1. 

Wave reflections, as well as blocking and stopping of the waves by 
the current, were investigated. Both positive convex currents and 
positive concave currents admit reflections, but reflections are 
only possible for negative convex currents. Reflections may also 
occur on opposing convex currents before the waves are blocked. On 
negative concave currents the linear waves may also be stopped by 
the current. However, very large opposing current velocities are 
required to do so. Furthermore, reflections on an adverse convex 
current will occur more frequently than the "stopping" velocity 
criterion can be satisfied. This is so since large negative 
values of V are needed to stop the waves. 

Wave rays may also be trapped within the boundaries of the 
current. Waves that are generated on still water inside the 
annulus, and which penetrate the annulus, while travelling in the 
same direction as the concave current, may undergo multiple 
reflections and remain trapped within a certain reflection radius 
of the current. Only waves generated within the boundaries of the 
annulus can be trapped so as to remain within the annulus. The 
theory presented in this paper limits the waves, and therefore 
also the current distributions, to cases where R cosec <J>Q > 1. 
Figure 4 then shows that it is not possible to construct an 
adverse current configuration which can trap waves. 
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