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TRANSIENT PROPAGATION OF WAVES IN A FLUME 

Kwok Fai Cheung1, Michael Isaacson2, Member ASCE, and Etienne Mansard3 

ABSTRACT 

A recently developed numerical method is applied to the study of transient, 
nonlinear wave propagation in a flume. The nonlinear free surface boundary 
conditions and the wave generator boundary condition are expanded about the 
corresponding equilibrium positions by perturbation expansions. The boundary 
conditions are then satisfied to second order by a numerical integration in time, and the 
field solution at each time step is obtained by an integral equation method based on 
Green's theorem. The propagation characteristics of regular, trichromatic and irregular 
waves are studied numerically, and the significance of nonlinear effects is highlighted. 

1.    INTRODUCTION 

The numerical prediction of transient wave propagation in a flume has been the 
subject of investigation for a number of years. To a first approximation, linear wave 
theory may be used to describe the transient wave field. However, there are a number 
of shortcomings associated with this approach, which are mainly due to the neglect of 
higher order forced and free wave components. Although the amplitudes of these 
higher order components are generally small, these may become important for wave 
flume and basin tests involving wave interactions with harbours, floating breakwaters 
or moored vessels. 

To account for nonlinear effects, the transient wave problem may be treated 
numerically by a time-stepping procedure, in which the full nonlinear free surface 
boundary conditions are applied on the instantaneous free surface and a new system of 
simultaneous equations is generated and solved at each time step as the free surface 
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moves to a new position (e.g. Longuet-Higgins and Cokelet, 1976; Kim et al., 1983; 
and Brorsen and Larsen, 1987). On the other hand, a second-order model defined on 
fixed boundaries can be obtained by the application of a perturbation expansion so that 
a solution to the system of simultaneous equations is required only once rather than at 
each time step. The boundary conditions to second order are then satisfied on the 
corresponding equilibrium positions by a numerical integration in time. Based on this 
approach, Isaacson and Cheung (1991, 1992) have treated the second-order diffraction 
problems in two and three dimensions respectively. 

The theoretical treatment for the extension of the second-order diffraction method 
in two dimensions to include the effects of a moving wave generator has been 
described by Isaacson et al. (1993). The computed free surface elevations have been 
validated through comparisons with experimental results. The present paper 
summarizes the theoretical and numerical formulations of the method, and places 
emphasis on numerical results for the propagation of various transient wave trains and 
wave packets. 

2. THEORETICAL FORMULATION 

A description of the theoretical and numerical formulations has been given in 
detail by Isaacson et al. (1993) and only a brief outline of the method is given here. 
With reference to Fig. 1, the two-dimensional problem is defined with respect to a 
right-handed Cartesian coordinate system (x,z). The wave generator is located above a 
fixed vertical plate and extends from a distance h above the floor of the flume to the 
water surface. The generator may produce a combined piston/paddle motion defined 
by the generator's horizontal displacement 8 at the still water level together with a 
rotation 0 measured clockwise from the z axis. With the fluid assumed incompressible 
and inviscid, and the flow irrotational, the fluid motion is described by a velocity 
potential 0 which satisfies the Laplace equation within the fluid domain and which is 
subject to boundary conditions on the generator surface Sw> the instantaneous free 
surface Sf at z = r\, the flume floor z = -d, and a radiation surface Sc. 

When the amplitude of the wave generator displacement is small compared to the 
height of the generator, and the water depth is not small compared with a typical 
wavelength, it is possible to apply Taylor series expansions to reduce the wave 
generator and free surface boundary conditions, originally derived on the 
instantaneous surfaces, to conditions evaluated at the corresponding equilibrium 
positions. The problem may then be defined with respect to a time-independent 
domain D which is bounded by the equilibrium generator surface Sg, the still water 
surface S0, the flume floor and the control surface Sc. The first-order and second- 
order quantities in the formulation are further separated by introducing perturbation 
expansions for 0 and r\ and taking the specified generator motion variables 8 and 6 to 
be first-order quantities: 

0 = e 0i + e2 02 + -• (1) 

T| = erii + e2r]2 + - (2) 

8 = eSi (3) 
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0 = e8i (4) 

where e is a perturbation parameter related to the amplitude of the horizontal 
displacement of the wave generator which is small. 

Substituting the power series representations for (j), r\, 8 and 0 into the Laplace 
equation and the boundary conditions, including the expanded generator and free 
surface boundary conditions, separate boundary value problems may be developed for 
each of the e and e2 terms in the power series. In the k-th order problem (k = 1, 2), 
the potential fa satisfies the Laplace equation 

V2^ = 0 in D (5) 

and is subject to the boundary conditions applied on the flume floor, the equilibrium 
generator surface and the still water surface. These are given respectively as 

at z = -d (6) 

on Sg (7) 

on S0 (8) 

on S0 (9) 

Here t denotes time, g is the acceleration due to gravity and n is distance in the 
direction of the unit normal vector n directed outward from the fluid region. Each of 
the terms fk, f^ and f£ represents known expressions which can be evaluated from the 
specified motion of the wave generator and the solution at first order. In addition, the 
potential has to satisfy a radiation condition 

f • c* - « »n St (.0, 

where c is the time-dependent celerity of the radiated waves on the control surface (see 
Orlanski, 1976; and Isaacson and Cheung, 1991). With the boundary conditions on 
each of the boundaries properly defined, the solution to the boundary-value problem is 
obtained by the application of a boundary integral equation involving a Green's 
function. 

Initial conditions correspond to a stationary generator and still water in the 
computational domain. A wave train is subsequently generated by applying a 
prescribed time series for the generator motion. The generator boundary condition, the 
free surface boundary conditions and the radiation condition, which together govern 
the development of the flow, are satisfied by a numerical integration in time. Since the 
boundaries are invariant in time, the matrix equation obtained through a discretization 

^ = 0 
dz 

3$k     ^Hk 
dz   "   3t = fk 

90k = 4' 
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of the integral equation need be inverted only once rather than at each time step, with 
variations in time only affecting the input vector of the matrix equation. The maximum 
time-step size for a given discretization and excitation wave frequency can be 
determined by the Courant criterion, cAt/AS < 1, where At and AS denote respectively 
the time-step and facet sizes. This criterion has been tested numerically in the context 
of the second-order diffraction problem, and has been found to provide reasonable 
estimates (Isaacson and Cheung, 1991). 

3. EXPERIMENTAL SET-UP AND PROCEDURE 

In order to verify the present numerical model, a series of physical experiments 
were performed at the Hydraulics Laboratory of the National Research Council of 
Canada. The experiments were carried out in a flume of dimensions 1.2 x 1.2 x 67 m. 
A beach of uniform slope 1:25 was located at one end of the flume, and consisted of a 
sub-layer of coarse sand covered by a 10-cm layer of sharp stones (2-3 cm). Earlier 
measurements of wave reflection by the beach indicated that the reflection coefficient 
was below 5% over the wave frequency range 0.3 to 1.3 Hz. However, long waves 
with a frequency range 0.04 to 0.05 Hz encounter a relatively high degree of 
reflection, corresponding to reflection coefficients of the order of 40 to 50%. 

The flume is equipped with a hydraulically driven wave generator which was 
operated in piston mode only. In the experiments described here, waves were 
generated in a water depth of 0.7 m and the free surface elevations at 12 different 
locations along the flume were monitored using twin wire capacitance wave probes. 
Data acquisition and analysis were performed using the Generalized Experiment 
control and Data Analysis Package (GEDAP; Miles and Funke, 1989) and the Real- 
Time Control (RTC) software packages (Crookshank, 1989). These allow all required 
probes to be sampled simultaneously. The sampling rate was chosen to be 0.05 sec, 
while the total sampling time for a typical test was chosen to be 100 sec. 

4. RESULTS AND DISCUSSION 

In the numerical and experimental results presented, a generator surface extending 
from the flume floor to the water surface has been adopted (i.e. h = 0 in Fig. 1) and 
the piston mode of the generator motion has been applied (i.e. 9 = 0). The 
computation was performed on an IBM 3090/150S computer at the University of 
British Columbia and double precision was used throughout. The variations of the 
free surface profiles in time and space are presented and the propagation characteristics 
of various transient wave trains are described. For the case of an irregular wave 
packet, simulated nonlinear free surface elevations at twelve different locations along 
the flume are compared with experimental results. 

In the development of a regular or bichromatic wave train, there is a continuous 
influx of energy from the generator. In order to avoid an abrupt initial condition and 
allow a gradual development of the wave field, the periodic generator displacement is 
multiplied by a modulation function Fm such that the generator develops its motion 
gradually from zero to the prescribed amplitude over a specified modulation time Tm. 
For the case of regular wave diffraction to second order, testing by Isaacson and 
Cheung (1991) has indicated that, as a suitable choice, Tm may be taken to be equal to 
a typical wave period. 
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4.1   Regular Wave Train 

Prior to an examination of results for irregular waves, the development and 
propagation of a regular wave train in time and space are first examined. For the case 
considered, the wave generator undergoes a sinusoidal displacement defined by 
8(t) = A sin(cot) Fm, where co = 2TC/T is the angular frequency, T is the wave period 
and A is the amplitude of the generator displacement. For a given wave frequency and 
water depth, the value of A can be related to the wave height by linear wave generation 
theory. Figs. 2 and 3 show the variations of the linear and nonlinear free surface 
profiles in space and time respectively. The incident wave conditions correspond to kd 
= 2 and H/L = 0.08, where k, H and L are respectively the wave number, the wave 
height and the wavelength of the resulting regular wave train. In the figures, A = H/2 
is the wave amplitude. To ensure stability of the simulation, the facet and time-step 
sizes were taken respectively as AS = L/30 and At = T/60, which correspond to a 
Courant number, cAt/AS = 0.5. 

Fig. 2 shows linear and nonlinear free surface profiles along the flume at selected 
instants. At t = 0, the initial condition corresponds to still water everywhere in the 
computational domain. With the imposition of the generator motion over the first 
cycle, incident waves are gradually generated and propagate away from the generator 
at the corresponding group velocity. A steady state solution is developed near the 
generator after the first cycle, while the flow further from the generator takes 
somewhat longer to reach a steady state. It is noted that the initial waves of the wave 
train are unsteady with elongated lengths and smaller amplitudes, and appear to 
propagate at faster speeds. Without a radiation condition applied at the control surface, 
the reflection of these elongated initial waves would affect the flow near the test section 
well before a steady state solution has been developed. 

Fig. 3 shows the time histories of the linear and nonlinear free surface elevations 
at four different locations along the length of the flume. For the location nearest to the 
wave generator, a stable steady-state solution for the free surface elevation is obtained 
for the entire period of simulation after a short duration of transient effects. Further 
down the flume, the duration of transient effects increases, and the initial waves are 
found to have longer periods as indicated above. It is also observed that a modulation 
is induced to the initial portion of the wave height envelope for the records at locations 
far away from the wave generator. At the last record, corresponding to a location 7 
wavelengths away from the generator, a slight fluctuation of the free surface elevation 
is observed immediately after the modulation. These phenomena of wave front 
modulation and fluctuation have been examined analytically and similar results have 
been discussed by Mei (1983). 

The numerical data also indicates that a system of second-order free waves at 
twice the incident frequency is also generated at the wave generator and propagates 
into the computational domain at the corresponding group velocity. These high 
frequency free waves are due to nonlinear interactions between the second-order free 
surface and the wave generator, and have also been observed in laboratory tests. 
Generally, the amplitude of these second-order free waves is small and does not have a 
significant effect on the overall wave profile. Since the numerical model is based on a 
second-order approach, the most obvious nonlinear effect in a regular wave train is to 
give rise to wave profiles with steeper crests and flatter troughs, whereas nonlinear 
effects on the celerity and group velocity are of higher order and cannot be reproduced 
here. 
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4.2 Bichromatic Wave Train 

A bichromatic wave train at first order is composed of two primary harmonics 
propagating independently of each other, and each with a behaviour identical to a 
regular wave train. At second order, cross-interactions between the two harmonics 
give rise to a wave field which is modified to a greater extent. 

Figs. 4 and 5 show the development of a bichromatic wave train in space and time 
respectively. The driving signal of the bichromatic wave train is obtained by adding a 
side-span harmonic signal to the excitation described in Section 4.1, such that the 
resulting signal is given by 5(t) = A [sin(cot) + sin(0.8cot)] Fm. Similar to the regular 
wave train, the bichromatic wave train develops its steady state solution rapidly. In 
Fig. 4, after a steady state solution has been developed, the same free surface profile 
repeats itself at an interval of 5T near the generator, which corresponds to the beat 
frequency of the signal. The free surface profile is also shown to repeat itself along 
the flume at a fixed interval. In Fig. 5, the time histories of the free surface elevation 
at selected locations along the flume are found to be virtually identical after an initial 
duration of a transient signal, which is greater for locations further along the flume. 

Nonlinear effects associated with the super-harmonic interactions are indicated in 
Figs. 4 and 5 at locations where the amplitude of the free surface elevation is high, 
giving rise to steeper crests and flatter troughs than the linear theory predictions. 
However, a more careful inspection of the numerical results also indicates the presence 
of a second-order sub-harmonic component, which is phase-locked to the wave group 
structure, with troughs beneath the high waves and crests in between the wave groups. 
In addition, low-frequency spurious free waves which are generated nonlinearly 
through the second-order boundary conditions are also present in the numerical 
solution. Although the amplitudes of these second-order components are generally 
small, the correct reproduction of the second-order wave field is critical in the testing 
of systems with relatively low natural frequencies. Such considerations have given 
rise to research into the development of suitable second-order control signals 
(e.g. Barthel et al., 1983). 

4.3 Regular Wave Packet 

The examples studied so far represent a steady-state influx of energy at the wave 
generator. Despite a short duration of transient effects associated with the propagation 
of the initial waves, a steady-state solution near the wave generator can be developed 
rapidly in time and space. To further illustrate transient effects in wave propagation, 
the development a regular wave packet is considered here. 

The modulation function applied to the regular and bichromatic wave trains is 
modified to incorporate a gradual decline from unity to zero during the fourth cycle. 
The regular wave packet is then generated by applying this modulation function to the 
regular wave signal described in section 4.1. Figs. 6 and 7 show the development of 
the regular wave packet in space and time respectively. In Fig. 7, immediate adjacent 
to the generator at x/L = 1, the amplitude of the wave packet is quite uniform and 
corresponds to that of a regular wave train. Further away from the generator, the 
amplitude of the packet increases slightly and then decreases gradually with time and 
distance away from the generator. The decrease in wave amplitude is associated with 
an increase in the length of the wave packet as the energy is dispersed to a greater 
extent. 
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Despite the changing wave amplitude, the period and wavelength in the core of the 
wave packet remain relatively constant. In addition to the elongated initial waves, a 
trail of short waves is also observed to lag behind the packet. Nonlinear effects 
associated with the superharmonics are more obviously observed, especially at 
locations of high waves. Due to the decrease in wave amplitude, nonlinear effects also 
decrease with distance away from the wave generator. On the other hand, the forced 
and free sub-harmonic components associated with the wave packet is not clearly 
observed here. 

4.4   Irregular Wave Packet 

To verify the present numerical procedure, the model has been applied to the 
simulation of a wave flume experiment performed at the Hydraulics Laboratory of the 
National Research Council of Canada. The experiment was carried out with a still 
water depth of 0.7 m. The generator was operated in piston mode and was used to 
generate an irregular wave packet by applying the generator displacement time history 
shown in Fig. 8. A spectral analysis of the displacement time history indicated two 
dominant peaks at 0.48 and 0.64 Hz. For the specified water depth of 0.7 m, these 
two frequency groups correspond to relative water depths kd = 0.92 and 1.32 
respectively, and to celerities c = 2.30 and 2.12 m/s respectively. In the numerical 
model, the time-step and facet sizes were selected as 0.025 sec and 0.1 m respectively. 
On the basis of the Courant criterion, these values correspond to the capability of 
simulating celerities of up to about 4 m/s. 

The measured and simulated nonlinear free surface elevations at twelve different 
locations along the flume are plotted as functions of time in Fig. 9. In general, 
comparisons between the numerical and experimental results indicate good agreement 
with respect to both the amplitude and phase, except for the portions of the records 
after the occurrence of the maximum amplitude. This may possibly be due to wave 
breaking that occurred near the generator in the experiment after the highest wave was 
generated. The discrepancies are first observed in the record corresponding to a 
location 4.11 m from the generator, with the simulated free surface elevation found to 
be higher than the measured elevation near time t = 25 sec. These differences appear 
to spread to a greater extent in the records for locations further down the flume. The 
discrepancies between the simulated and measured free surface elevations appear to be 
in the form of high frequency waves which travel at slower speeds, and appear to 
affect the later part of the records more significantly. 

Even though the high and low frequency components in the applied displacement 
function are generated simultaneously, in the results presented the lower frequency 
components with higher amplitudes and celerities propagate ahead of the higher 
frequency components, so that the randomness of the wave profiles as shown in Fig. 
9 appears to decrease with time. Although the frequency content of the entire record 
(100 seconds long) measured at various locations along the flume remains basically the 
same, the time-histories of the free surface elevations at different locations as shown in 
Fig. 9 are modified more significantly. Since components of similar frequencies 
propagate at approximately the same speed, after a long duration of simulation the free 
surface profile and elevation are characterized by a series of beat phenomena with 
successive frequencies and amplitudes. The overall decline in wave amplitude with 
distance from the generator is partly attributed to the segregation of the different 
frequency components and partly to the amplitude dispersion of a wave packet as 
discussed in section 4.3. 
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In addition to predicting the linear and nonlinear wave fields, the present 
numerical model provides a useful alternative approach in the study and analysis of the 
various transient, nonlinear wave phenomena. A potential application of the method is 
to the calculation of suitable first and second-order generator control signals which 
may be required prior to carrying out particular flume tests. 

5.    CONCLUSIONS 

A time-domain second-order method for the simulation of transient, nonlinear 
wave propagation in a flume is summarized. The boundary conditions are satisfied to 
second order by a time-stepping procedure, and the field solution at each time step is 
obtained by an integral equation method based on Green's theorem. Since the 
boundaries are invariant in time, the solution to the matrix equation obtained through a 
discretization of the integral equation is required only once and can be applied to 
different time histories of generator motion. The method is applied to a study of the 
transient propagation of various wave trains and wave packets. 

Free surface profiles along the flume and time histories of the free surface 
elevation are obtained for a regular wave train, a bichromatic wave train, and regular 
and irregular wave packets. For the case of a regular wave train, the numerical model 
is shown to be stable and robust, and is capable of maintaining a steady state condition 
for a sufficiently long duration of simulation. The propagation of a bichromatic wave 
train is similar to that of a regular wave train, but includes an additional second-order 
sub-harmonic component. The propagation of the regular and irregular wave packets 
is found to be unsteady and transient, given its varying wave profile along the length 
of the flume. For the case of an irregular wave packet, time histories of the water 
surface elevation along a wave flume are compared with those predicted by the 
numerical model and these indicate favourable agreement. Second-order effects in 
transient wave propagation have been highlighted and potential applications of the 
second-order wave model are indicated. 
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Fig. 2. Free surface profiles along the wave flume at various instants for a regular 
wave train. , linear solution;  , nonlinear solution. 
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Fig. 3. Time histories of free surface elevation at various locations along the flume for 
a regular wave train. , linear solution;  , nonlinear solution. 
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Fig. 4. Free surface profiles along the wave flume at various instants for a bichromatic 
wave train. , linear solution; , nonlinear solution. 
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Fig. 5. Time histories of free surface elevation at various locations along the flume for 
a bichromatic wave train. , linear solution;  , nonlinear solution. 
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Fig. 6. Free surface profiles along the wave flume at various instants for a regular 
wave packet. , linear solution;  , nonlinear solution. 
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Fig. 7. Time histories of free surface elevation at various locations along the flume for 
a regular wave packet. , linear solution;  , nonlinear solution. 
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Fig. 8. Time history of wave generator displacement (piston mode) for an irregular wave 
packet. 
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Fig. 9. Time histories of free surface elevation at various locations along the flume for 
an irregular wave packet. , simulated;  , measured. 




