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Abstract 

A numerical model is presented for the prediction of combined 
refraction-diffraction of waves propagating in the region of slowly varying 
current and topography. For steady waves, two elliptic-type model 
equations are derived from the mild-slope equation which can be solved in 
a similar way to an initial value problem without stability restriction. 
Therefore, the present model appears to be an efficient tool for irregular 
wave propagation problem in a large coastal area. Some examples of 
numerical computations are given for the cases concerning wave-current 
interaction on a sloping beach and over a mound. 

Introduction 

Waves propagating near a tidal inlet will be transformed due to 
currents and irregular water depths. The wave-current interaction is one of 
the most interesting and important phenomena for the prediction of wave 
climate and resultant sediment transport in coastal areas. The 
approximation of irregular waves by a monochromatic wave in modeling of 
wave transformation in coastal areas often introduces large errors in wave 
heights. There is a definite need for an efficient method for the 
calculation of irregular wave transformation over large coastal 
area(Panchang et al., 1990). 
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Recently, a number of studies have been made for the analysis of 
wave-current system. Booij(1981), Liu(1983), and Kirby(1984) proposed 
hyperbolic wave equations governing the propagation of waves in water 
of varying depth and currents in the mild-slope approximation. They used 
parabolic approximation in order to circumvent the difficulty in calculation 
of elliptic equations for regular waves. Ohnaka et al.(1988) provided a set 
of mild-slope equations based on Kirby's equation, which consists of two 
first-order equations describing the water surface elevation and flow rate. 
This model includes partially reflective boundary condition. 

The models mentioned above employ parabolic- or hyperbolic-type 
differential equations which are in general not so efficient to use in large 
area (order of hundreds of wave length). In shallow water they need fine 
grid resolution to meet sufficient accuracy of numerical results, which is 
more crucial condition for the high frequency components of wave 
spectrum. 

In the present study, a new set of mild-slope equations describing the 
deformation of regular waves by a large-scale current field in water of 
irregular depth is derived, and an efficient numerical method is also 
presented. The elliptic type governing equations are solved in a similar way 
to an initial value problem. The accuracy of the numerical method does not 
greatly depend on grid size and computation time is comparatively short. 
Therefore, this method is extensively applied to several spectral components 
in order to simulate irregular wave transformation due to combined 
refraction-diffraction. Linear superposition of monochromatic-wave 
calculation is made to obtain spectral estimates. Some results of the 
computation are compared with analytical solutions, and numerical 
examples concerning the interactions between waves and currents over a 
mildly sloping beach and also over a mound are presented. 

Derivation of Governing Equations 

The mild-slope equation has been used successfully as a model 
equation for describing surface water waves propagating over a seabed of 
mild slope(eg. Berkhoff, 1972). For a wave-current interaction Kirby(1984) 
derived a general equation. Recently Chae et al.(1990) and Jeong(1990) 
have rederived the mild-slope equation using variational principle and 
Green's theorem for linear water waves following Booij's method(1981). 
The equation can be written as 

 +(V-U) V(CCgVO) + (a2-k2CCg)0+W = 0 (1) 
Dt2 Dt at 

where D/Dt = d/dt + LJ-V, V = [(d/dx) i, (d/dy) j], and U = (u , v), O the 
complex velocity   potential   at the mean   surface level, a the intrinsic 
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angular frequency, k wave number, C and Cg are the phase and group 
velocity respectively, which are defined according to C = ovk, 
Cg = dovdk, o-  = gk tanh kh , and W dissipation coefficient, 

co = cr + MI (2) 

where co is absolute angular frequency. The velocity potential at an 
elevation z is given by 

0(x , z , t) = f(z) cKx , t) (3) 

where f(z) = (cosh k(z+h))/(cosh kh). Since the bottom is mildly sloping, 
the derivative of f with respect to x. will be small. 
For purely periodic waves the velocity potential is given by 

c)>(x,t) = Re[cf>(x)e-itotj (4) 

Substitutions of eq.(4) into eq.(3), and further them into eq.(l) produce 
an elliptic equation as follows: 

- ico[ai-V$ + tRV-U)] + (U-V) (JJ-Vc^) + (V-IJ) (U-Vcf,) 

- V-(CCgV^) + (a2 - co2 - k2CCg) - icoWcf. = 0 (5) 

If II = (0, 0), eq.(5) reduces  to  Berkhoff's(1972)  mild-slope equation. 

Here the complex velocity potential 4> can be written in terms of the 
amplitude a and the phase S as 

4> =  -igfeis (6) 

where g is acceleration due to gravity, and S(x) phase function given by 

Sfo) - k% ~ cot (7) 

Then eq.(5) with the substitution of eq.(6) reduces to a set of elliptic 
equations by separating the resulting equation into real and imaginary parts 
as follows 

r       2 2       i 2 la, . a      1 a 
V-lli—(co - U-VS) + CCg—VS| + W— = 0 (8) 

I    cr2 a2      J * 

CCg-§KVS)2 - OJ-VS - co)2f + (cr2 - k2CCg)-|- 

- V-(CCgf) + (V-LJ) (LJ-Vf) + II-V(U-V£) = 0 (9) 

These are the final forms of the wave equation for this numerical model 
study. In the present paper, we are concerned with the problems where W 
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is assumed zero for simplicity and the mean current is in the following 
condition 

ILII2 « CCg (10) 

Eq.(9) then can be simplified as follows: 

CCgJL(VS)2 - (1I-VS - a))2 #• + (a2 - k2CCg) J, 
- V-(CCgVf) = 0 (11) 

If we set II = (0, 0), eqs.(8) and (11) reduce to the Ebersole's(1985) model 
equations for depth refraction-diffraction. Further, the equation of wave 
action conservation for steady waves can be simply obtained from eq.(8). 

The main wave direction 9 can be given from eq.(12) with the 
combination of eqs.(8) and (11). The irrotationality condition of wave 
number vector is 

a(|VSlsin8) = a(|VS|cos6) 

ax ay 

Numerical Computation 

Both eqs.(8) and (11) are of the elliptic type and can generally be 
solved as a boundary value problem using finite element method. K we 
neglect wave reflections from boundaries, and also if approximate 
intermediate values of wave properties can be provided at all grid points 
using a refraction model, the problem can be converted into an initial value 
problem for the wave diffraction (eg. Ebersole, 1985). 

Finite difference method is adopted to solve the governing equations 
(8), (11) and (12). The coordinate and grid systems as shown in Figure 1 
are employed. Forward difference scheme is used in x-direction and 
centered scheme in y-direction to approximate the eq(8), which yields the 
following difference equations. 

(a!)2 bj = (aj+1)2 b|+1 + ~ [(aj+1f bj+1 - (a}.,)2 b^] (13) 

where 

b}= |—] [u(a)-U-VS)+CCg|VS|cos9+V(a)-LI-VS)+CCg|VS|sine]1 

}  ia2y i 
(aj   ) bj     = T(aj_!) bj_1 + (1 - 2T) (a,-   ) bj     + T(aj+1) bj+1 

where T is Abbott's dissipative interface factor (O^TSIO.5). 
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Figure 1. Definition of coordinate system, grid cell 
and wave angle conventions. 

Eq(ll) can be rearranged in the standard form of quadratic equation 

pflvsir + Q(|VS|) + R = 0 

The solution at a point (i , j) is given as follows 

ii' r 

|vs|j 
! -Q+(Q2-4PR)2 j 

2P J. 

where details of P, Q, R are given in Jeong(1990). 

Differentiation eq(12) for wave direction 6 can be written as 

.-i( r \i+l 6j = sin_1|  T(|VS|ane)|_i + (1 - 2T) (|VS|sm8)j 
I |VS|| 

A 1 \ 

+ Tdvslsine)^1 - -JL((|vs|cose)j+1 - (ivslcose)^) 11 
2Ay \) 

(14) 

(15) 

(16) 

Boundary conditions are now discussed to solve the governing 
equations. Input wave conditions are to be given along the offshore 
boundary, which are wave height, period and direction. At the side 
boundaries waves will be transmitted without reflection. Near the land 
boundary wave will break and be fully absorbed. Wave breaking criteria 
Hb = 0.78hb is used for simplicity, where Hb is breaker height and hb 

breaker depth. 
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Initial wave field is defined at all grid points using the SnelPs law. 
For the calculation of wave diffraction we need intermediate values of wave 
heights and directions over the modelled area. These can be provided from 
a refraction model based on energy balance equation for the waves 
propagating on currents(eg. Chae and Song, 1986). 

The computation is made row by row and proceeds toward the 
shoreward direction as in the method for an initial value problem. 

As we use steady-wave iteration approach, the simple iterative 
method for the solution of the equations may have no stability restrictions 
(Roach, 1982). From the sensitivity analysis for the waves propagating over 
a circular shoal, variation of computed wave heights is less than 10% for 
relative grid sizes(L^Ax) from 4 to 32 and L,/Ax = 4 gives the best fit to 
the experimental data. It can be said that the grid size of the present model 
does not significantly depend on wave length. However the restriction is 
strictly applied to parabolic models. This is one of the major advantages of 
the present model. 

Iterative solution procedure is carried out until the solutions converge 
to the criterion given as follows 

max 
(Xj)new      Qtydd 

(Xj)old 

<   0.005 (17) 

where Xj is the computed value at a grid point (i, j). Then the solutions 
become coupled ones with three governing equations. 

The validity and accuracy of the above mentioned numerical scheme 
have been proved in Chae et al.(1990) through the comparison with 
experimental data for depth refraction-diffraction problem of 
monochromatic waves. 

Calculation of Wave Spectral Changes 

As the present monochromatic wave model is computationally fast 
and stable especially for short period waves, it may be valuable to simulate 
spectral transformation of irregular waves propagating in water of complex 
bathymetry and with ambient currents. Input spectrum S0(f, 6) is given as 
below 

s0(f, e) = s0(f) G(f, e) (is) 

where 

So(f)=0.25Hj3 T^T^fT5 exp[- lSBCTyfT*] (19) 
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is the Bretschneider-Mitsuyasu(B-M hereafter) frequency spectrum, and the 
directional spreading function G(f, 8) is given by 

(1   2s_ir2(s+l)l     ~m 
G(f, 8) = I — T* *— 1 cos251 -1 (20) 

lir r(2s+l)J \2) 

T : gamma function 

Ismax-(wp)5      : fsf
P 

SH 2^     *   * (21) 
[WC^p)"" : f*fP 

fp : Peak frequency of S(f),   (fp = 1/1.05 7h3 used) 

The frequency spectrum and directional spreading function are 
divided into equal segments. The lower and upper frequency limits of the 
spectrum are 0.07Hz and 0.37Hz.   Af = 0.02Hz(15 frequency bins) and 

A8 = 10°(17 directional bins) are used. 

The input wave amplitude for a particular frequency-directional 
component is a0 = [2S0(f, 8) Af AS]1'2. The resulting wave amplitude at 
any location can be computed using the model, and then the transformed 
spectrum S(f, 8) can be obtained as 

S(f, 8) = [a/aJ2S0(f,8) (22) 

Computation Results and Analysis 

To demonstrate the applicability of the model numerical 
computations are made for two cases. The first case is for the refraction- 
diffraction due to rip-current in a mildly sloping beach as shown in Figure 
2(studied by Arthur, 1950). 

The computational domain is divided into square grids 
( Ax = Ay = 10 m) and numerical calculations are performed. Normal 
incident waves of HQ = 1 m, T = 8 s are used as an incident wave 
condition at the offshore boundary. The background(of initial and 
intermediate) wave field are specified using the Snell's law and the 
refraction routine in the program, respectively. The dimensionless wave 
heights H/Hj, for two transections are plotted in Figure 3. For the purpose 
of comparison, parabolic model results(Kirby, 1984) are also shown in the 
same figure. A comparison of the figures shows that they are in good 
agreement. 
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Figure 2. Rip-current field.        Figure 3. Wave height relative to incident 
wave for waves interacting with rip 
current. 

The second case is for irregular wave propagation over a shoal as 
shown in Figure 4, which was recently simulated in a hydraulic laboratory 
equipped with multi-directional random wave generators(Hiraishi, 1991). 
The shoal is similar to that used in the experiments of Ito and 
Tanimoto(1972) with a minimum water depth of 0.05 m at the center of the 
shoal and constant depth(0.15 m) in the region outside the shoal. B-M 
spectrum is used for the input spectrum for which H^3 = 0.1 m, Tw = 1.5 
s, and SJJ^ = 75(narrow directional spectrum) are used. The grid sizes 
used are Ax = Ay =0.1 m. The results are presented in Figure 5, in the 
form of normalized wave height against the input wave height. The 
computations agree very well with experimental data which are for the case 
of non-breaking waves. As the frequency and directional spectra are not 
available, the comparison for those spectra between computation and 
experiment can not be made. However, the spectrum can be simulated by 
linear superposition of monochromatic wave components(eg. Panchang et 
al, 1990). From those comparisons, the present model appears to be used 
effectively for the calculation of irregular wave propagation with respects to 
computation accuracy and time(26 min. with IBM 386 PC). 

The present model is used for the analysis of irregular wave 
transformation due to combined refraction-diffraction while the waves 
propagate over a circular shoal(Ito and Tanimoto, 1972). The input 
spectrum is descretized into segments of Af and A0. H^,3 = 1.0m and 
Ti/3= 5.0 s are used for the frequency spectrum(Figure 6) and angular 
spreading parameter S,^ = 25 and 75 for the broad and narrow 
directional spectra, respectively. Current velocity fields are generated using 
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Figure 4. Experimental configuration(Hiraishi, 1991). 

Experimental data 

Numerical result 

Figure 5. Comparisons between present model results 
and observed  data. 
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a standard depth-averaged flow model, and assumed frozen during the 
wave propagation over the field. A uniform current field is assumed at 
the incoming boundary where the maximum velocity is 0.5 m/s. 

The results are shown in Figures 6 and 7. The frequency and 
frequency-directional spectra are for opposing and following current 
conditions, and also for broad and narrow directional spreading conditions 
at a specified point(x/L0 = 7, y/LQ = 3) behind the circular shoal. 

As shown in Figure 7, we can clearly see the differences in spectral 
shapes of input S0(f, 0) depending on the value of S,,^. The smaller value 
of Sjnax yields less peaky spectral shape and broader band of energy 
distribution than those with larger Smax. When the waves propagate on a 
current field, the wave height and direction are strongly dependent on the 
magnitude and direction of the current. 

In the following current field the velocities over the shoal are 
generally larger than those in other region. This will increase the celerity 
and decrease focusing effect of wave rays propagating over that region, but 
in the opposing current the effect will be adverse. Such a wave-current 
interaction causes a large peak around centered direction in the opposing 
current field and a small peak with side humps in the following current. 
The waves with directionally narrow banded spectrum will produce very 
sharp peak, which is contributed mainly from the peak region. 

o- 

*"SrreK = 75' Opposing Current 
X 

""""••• o 
e co- " ^nra = 75' Follow'n8 Current 
% ° 

^-Srrm = 25, Opposing Current 

CO     - 
U"snrK = 25, Following Current 

:x 

•-' 
c ^^ 

Q   O 

L 

0)   o 
a 

I sjfl 

g 
o ii i         i         I         i         i         i 

0.00 0.10 0.20 0.30 0.40 0.50 

Frequency  (Hz) 

Figure 6. Input frequency spectra(S0(f)) and output frequency 
spectra(S(f)) at x/L0 = 7, y/L0 = 3. 
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Figure 7. Input directional spectra(So(f,0)) and output directional 
spectra(S(f, 6)) at x/LQ = 7, y/L0 =3 for different Sj^ and 
current conditions, (a) So(f,0), (b) S(f,0) with following 
current, (c) S(f,0) with opposing current. 
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Figure   8.  Wave  height   comparisons,   for  narrow 
and  broad  directional spectra. 

The computed frequency spectra are shown in Figure 6. The spectral 
peaks are almost at the same frequency, the amplification is prominernt in 
the peak frequency region, where the current effects are also dominant. 

The propagation of wave spectra with narrow or broad directional 
spread shows a little difference between the wave heights in the following 
and opposing current conditions. The wave heights in the opposing current 
field are generally larger than those in the following current field(Figure 8). 

Conclusions 

A set of elliptic type mild-slope equations has been derived for 
wave-current interactions over a slowly varying topography. Numerical 
computation method to solve the equations has been presented. The model 
solves the elliptic equations in a way similar to an initial value problems. 
Accuracy of numerical computation does not greatly depend on grid size. It 
can be said that the present model is efficient for wave propagation 
problems in a large coastal area. Numerical results are shown for 
transformation of the waves propagating on a rip-current in a mildly sloping 
beach. They are in good agreement with published ones(Kirby, 1984). 

It is also shown that spectral transformation of irregular waves can 
be satisfactorily simulated by summing up the results from a monochromatic 
refraction-diffraction model for component waves of a spectrum. From the 
analysis of frequency-directional spectrum for waves propagating on 
currents flowing over a mound we can see large differences in spectra 
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depending on current directions, but there is a little difference in wave 
heights. When the waves propagate on strong currents in shallow water, 
non-linearity of the waves and wave breaking will be significant, and 
therefore this model should not be applied. 
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