
CHAPTER 2 

Transformation of nonbreaking waves over a bar 

S. Beji1, T. Ohyama2, J.A. Battjes3 and K. Nadaoka4 

Abstract 

Data collected from measurements performed in waves 
propagating over a trapezoidal bar on a horizontal 
bottom are used to test a fully nonlinear numerical 
model. The experiments include both regular and random 
waves. Wave form evolutions in the shoaling region, the 
near resonant wave-wave interactions over the bar, and 
finally the decomposition behind the bar are well 
predicted. The results provide assurance for the 
reliability of the numerical model. 

1. Introduction 

Numerical modeling of evolving surface gravity waves 
based on the full nonlinear equations for irrotational 
motion was initiated by Longuet-Higgins and Cokelet 
(1976). Numerous alternative models have been presented 
since (Vinje and Brevig, 1981; Dold and Peregrine, 
1984). Surface profiles predicted by these models are 
in general quite realistic, even in the phases of 
profile steepening and turnover as in plunging breakers 

Former post-doctorate fellow at Delft university of 
Technology. Present employment: Naval Architecture and Ocean 
Engineering Faculty, Istanbul Technical University, Turkey. 

o 
Research scientist, Env. Eng. Div., Shimizu Corp., 

Etchujima 3-4-17, Koto-ku, Tokyo 135, Japan. 

Professor, Dept. of civil Eng., Delft University of 
Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands. 

4 
Assoc. prof., Dept. of Civil Eng., Tokyo Institute of 

Tech., o-okayama, Meguro-ku, Tokyo 152, Japan. 

51 



52 COASTAL ENGINEERING 1992 

(prior to impact). However, quantitative comparisons 
between predictions and observations are rarely given. 
The purpose of the present paper is to give such 
comparisons, for the demanding case of deformation and 
decomposition of near-breaking waves passing over a 
shallow bar. 

It is known that relatively long waves passing 
over a bar or another submerged obstacle decompose into 
shorter components. In the shoaling region the 
amplitudes of the bound harmonics are initially 
relatively small. If the wave field continues to 
propagate into a shallower region, such that the medium 
becomes non-dispersive for this particular wave field, 
then the near resonance conditions for triplet- 
interactions are satisfied (Phillips, 1960). At this 
stage, a rapid energy flow from the primary wave 
components to the higher harmonics is observed and the 
amplitudes of higher harmonic components become 
appreciable. 

The passage into deeper water results in the 
release of the bound harmonics followed by interactions 
taking place among these released wave components, 
which introduces drastic and rapid changes in wave 
forms. During this final stage, the amplitude of higher 
harmonics become comparable with, in some cases larger 
than, the primary wave amplitudes (Kojima, H. et al., 
1990; Ohyama and Nadaoka, 1991; Beji and Battjes, 
1992). Obviously, predicting the evolutions of a given 
incident wave field in such regions poses a real 
challenge; this suggests a good test case for a 
nonlinear numerical wave propagation model. 

The paper presents a brief account of a comparison 
of results of simulations with a numerical nonlinear 
model with experimental data for conditions as 
described above. For details, reference is made to 
Ohyama et al. (1992). 

2. Experiments 

The measurements reported here were carried out as a 
subset of a larger program, an account of which can be 
found in Beji and Battjes (1992). 

The experiments were performed in a wave flume of 
the Department of Civil Engineering, Delft University 
of Technology. The flume is 37.7 m long, 0.8 m wide, 
and 0.75 m high. It is equipped with a hydraulically 
driven, piston-type random-wave generator. The bottom 
profile is sketched in Figure 1. 
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Figure 1. Definition sketch of wave flume and locations 
of wave gages. 

A submerged trapezoidal bar with an upslope of 1:20 and 
a 2 m horizontal crest followed by a 1:10 downslope was 
constructed. The still water depth was 0.4 m in the 
deeper region and 0.1 m in the shallowest part above 
the horizontal section. At the end of the flume 
opposite to the wave generator, a roughened plane beach 
with a 1:25 slope served as a wave absorber. 

Measurements of the free surface displacements 
were made with parallel-wire resistance gages at 7 
different locations as shown in Figure 1. The time 
history of the wave-board displacement was recorded 
also. In each run, data were recorded simultaneously 
from 8 separate channels at a sampling frequency of 
approximately 25 Hz. 

Four different measurements were realized: two 
different spectral shapes (periodic waves with a spike 
spectrum and random waves with a JONSWAP target 
spectrum), and two different peak frequencies (0.5 Hz 
and 0.8 Hz, referred to as the "long" waves and the 
"short" waves, respectively). All the measurements 
reported here were for non-breaking waves. The 
following incident wave heights were selected for 
regular waves: 2.0 cm for 0.5 Hz, and 2.5 cm for 0.8 
Hz. Irregular waves required somewhat smaller incident 
significant wave heights to prevent occasional 
breaking. Thus, for irregular waves the following 
incident significant waves heights (Hli3) were used: 1.8 
cm for 0.5 Hz, and 2.3 cm for 0.8 Hz. 
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3. Numerical model 

Computations have been carried out with a numerical 
model developed by Ohyama and Nadaoka (1991). It is 
based on the time-dependent boundary element method for 
potential flow. The field equations outside the sponge 
layer at the downwave side (Bernoulli and Laplace) and 
the boundary conditions at the bottom and the free 
surface are standard and are not reproduced here. 

Figure 2 is an illustration of the numerical "wave 
tank", specifying the geometry and the labelling of the 
contour around the computational domain. 
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Figure 2. Computational domain. 

The original version of the model contains a non- 
reflective wave generator, which combines a vertically 
distributed wave-making source with a numerical filter. 
However, in the present calculations the same wave 
generating method (piston-type) is used as in the model 
experiments, as expressed by the following equation: 

dx 
(on Sz) , (1) 

in which <|> is the velocity potential and U is the 
horizontal velocity of the wave board. 

A numerical wave-absorption filter is located at 
the trailing end of the domain for the open boundary 
treatment. The filter is composed of a sponge layer, 
which absorbs the incoming wave energy by frictional 
damping according to the following equation: 
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in which \i is the damping factor of the sponge layer, 
of which the magnitude is distributed linearly in the 
layer, as shown in Figure 2, in order to reduce the 
wave reflection at the leading side of the layer. In 
view of the results of a previous study (Ohyama and 
Nadaoka, 1991), the width of the sponge layer is set 
nearly equal to the incident wave length (corresponding 
to the peak frequency in case of random waves), and the 
maximum value of the damping factor in the sponge 
layers, nmax, is given as Hmax(hD/g) 1/2=0.25. At the 
leeside of the sponge layer, a Sommerfeld type 
radiation condition was applied to absorb whatever wave 
energy would be left after passing through the sponge 
layer. 

Applying Green's theorem and the weighted residual 
method to the governing equations, integral equations 
can be derived; these are discretized spatially by 
using linear elements. In the discretized equations, <|> 
(on SF, Sv, S2 and S4), and dfy/dt, x\ and di\/dt (on SF) 
are invoked as unknown variables. These variables are 
rewritten by using A<|> and ATJ which are the increments 
of <J> and T| , respectively, during the time increment 
At. Linear algebraic equations to be solved for A<|> (on 
SF, Sv, S2, and S4) and AT| (on SF) are consequently 
obtained. 

In all the computations examined, the time 
increment, At, was set to 1/32 of the incident wave 
period (spectral peak period for random waves). The 
horizontal projection of the distance between the 
surface nodes, Ax, on the other hand, was varied in 
space. The values relative to the incident wave 
lengths, Ax/L, were 1/15 for the interval 0 s x s 7.6m 
and 1/40 for x > 7.6m for the 0.5-Hz waves, and were 
1/15 for 0 < x < 10.0m and 1/20 for x > 10m for the 0.8 
Hz-waves. 

The only experimental data used as input to the 
numerical model are the bottom profile, the still-water 
level, and the time history of the wave-board 
displacement (used to calculate the wave-board velocity 
U(t) in eq. 1); on the downwave side, full absorption 
has been assumed. The initial condition for each case 
was the still-water condition, i.e., <t>=Tj =0. Numerical 
results after 10 periods from the cold start are used 
for the subsequent discussion. 
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4. Comparisons of measurements and computations 

For the case of the long (f = 0.5 Hz), monochromatic 
waves, Figures 3a-3d show the comparisons of measured 
and computed wave profiles at the stations 1,3,5,7, and 
Figure 4 shows the spatial evolutions of the lowest 
three harmonics amplitudes of the surface displacement. 
The elevations have been normalized with H0, the target 
value of the incident wave height. 

0.0 1.0 

fot 
Figure 3.  Measured  (—)  and  computed  (oooj  wave 
profiles for monochromatic waves, f=0.5 Hz, at stations 
1,3,5 and 7 (a,b,c and d) 
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Figure 4.  Measured  (0:  n=l)(«:  n=2)(A:  n=3)  and 
computed (-—: n=l)( : n=2)(—: n=3) spatial evolution 
of harmonic amplitudes for monochromatic waves, f=0.5 
Hz. 
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The overall agreement is excellent, especially in the 
upslope region and over the horizontal part. In the 
downslope region, some minor differences between 
measurements and computations are observed. These 
discrepancies are attributed mainly to the fact that 
the spatial resolution may not have been sufficient in 
the downslope region because in this region waves with 
smaller wavelengths become dominant (see Figure 4) and 
consequently the initially adopted resolution becomes 
relatively coarse. 

Figures 5a-5d and Figure 6 show similar 
comparisons for the short monochromatic waves. The wave 
form in this case (short waves) does not evolve 
appreciably. The wave is closer to being a higher order 
Stokes type wave and does not behave as a shallow-water 
wave. Consequently, even in the shallowest region, the 
near resonant conditions for three-wave interactions 
are not satisfied and the growth rate of higher 
harmonics remains low. 

The agreement between computations and 
observations for the short-wave case is not as good as 
that for the long waves. The reasons for this are 
believed to be as follows. First, the effect of wave 
energy dissipation is not taken into account in the 
numerical model. The error due to this is expected to 
increase with frequency, therefore should be more 
significant for the 0.8-Hz waves than it is for the 
0.5-Hz waves. A second reason is related to the spatial 
resolution of the computation. The adopted relative 
resolution for the 0.8-Hz waves is less than for the 
0.5-Hz waves, and may not have been sufficient, 
especially for the higher harmonics. 

For the random incident waves, comparisons are 
given only for the "long" waves (f = 0.5 Hz) at the 
odd-numbered stations. The results are shown in Figure 
7 (time records) and Figure 8 (spectra). (The surface 
elevations in Figure 7 have been normalized with Hp, 
the target value of H-^.) The spectral evolution is 
substantial and so is the amount of high frequency 
energy generation. 

For the shorter waves (results not shown here), a 
negligible amount of high frequency energy generation 
was observed. The spectral shape was found to remain 
nearly intact at all stations. 
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Figure 5. Measured (—) and computed (ooo) wave 
profiles for monochromatic waves, f=0.8 Hz, at 
stations 1,3,5,7 (a,b,c,d) 
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Figure 6. Measured (0; n=l)(-: n=2)(A: n=3) and 
computed (•—: n=l) („„.,: n=2)(—: n=3) spatial evolution 
of harmonic amplitudes for monochromatic waves, f=0.8 
Hz. 
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60.0 

Figure 7. Measured (—) and computed ( ) surface 
elevations for random waves, f=0.5 Hz, at stations 
1,3,5,7 (a,b,c,d,) 

Although the overall evolution of the random wave 
forms and energy spectra are well predicted by the 
numerical model, detailed inspection of the time domain 
records shows significant differences in amplitude and 
phases, even in the constant-depth region between wave 
generator and slope. These are ascribed to insufficient 
resolution; the normalized mesh size Ax/L was set to 
1/15 in the initial propagation domain. This may not 
have been sufficient to reproduce the propagation of 
the higher-frequency components in the (incident) 
waves. 
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Figure 8. Measured (—) and computed ( )  energy 
density spectra of random waves, f=0.5 Hz, at stations 
1,3,5,7 (a,b,c,d) 

It may further be noticed that the observed energy 
levels are overestimated in the computations (see e.g. 
the spectra at station 5 and 7 in Figure 8);the 
differences increase with propagation distance. This 
is ascribed to viscous dissipation, which is absent in 
the computations. 

5. Conclusions 

General agreement between the measurements and the 
computations is quite satisfactory, provided the 
computations are done with sufficient resolution. For 
the long waves the numerical model performs very well, 
the discrepancies are usually small. The performance of 
the model is less for the short waves, but still 
acceptable. 

The  comparisons  presented  here  show  some 
discrepancies due the absence of dissipation in the 
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computational model, but that is not considered a 
serious shortcoming for the intended applications, i.e. 
near-field computation of strongly non-uniform and 
steep wave fields near localised topographical 
features. In such cases, the dissipation plays a minor 
role, particularly at full-scale (high Reynolds number) 
instead of the small-scale laboratory situation of the 
observations discussed here. 

Summarising, the results presented here confirm 
the reliability of the numerical model. As the cost of 
computing becomes lower, numerical models such as the 
one tested here will find wider use in engineering 
applications. 
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