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MODELING OF WAVE-CURRENT  INTERACTION AND BEACH CHANGE 

Susurau OHNAKA*and Akira WATANABE** 

ABSTRACT 

This paper presents a mathematical model of waves, 
currents and beach change with wave-current interaction. 
The wave model is based on the time-dependent mild-slope 
equations extended to a wave-current coexisting field, 
and is applicable to the computation of wave deformation 
due to combined effects of shoaling, refraction, 
diffraction,     reflection,     breaking    and    currents. Some 
examples of numerical computation are shown, and effects 
of the wave-current interaction on the nearshore waves, 
currents and beach evolution is discussed. In addition, 
a simple treatment of obliquely incident wave condition 
as well as improvement of sediment transport rate 
formulas   are   presented. 

1.   INTRODUCTION 

Not a few mathematical models of nearshore 
processes have recently been developed and applied to 
the prediction of nearshore waves, currents and beach 
evolution. In most models, however, effects of the 
interaction between waves and currents are neglected. 
In actuality nearshore waves induce currents through 
radiation stresses, and resultant currents conversely 
affect the wave field; namely, the wave-current 
interaction always takes place to a greater or less 
extent. Under certain conditions, it will become very 
important to take the interaction effects into 
consideration for an accurate prediction of nearshore 
waves      and      currents      as      well      as      resultant sediment 
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transport and beach change. 

In order to  incorporate the wave-current 
interaction into nearshore process models,  the wave 
deformation due to currents should be included in the 
computation of waves.  For a wave field coexisting with 
a varying current in the water of non-uniform depth,  a 
few kinds of wave models have been proposed  (Booij, 
1981;  Liu,  1983; Kirby,  1984).   These models are based 
on elliptic-type partial differential equations,  which 
are in general rather difficult to solve numerically. 
Hence these equations are sometimes approximated by 
parabolic equations,  but then they become inapplicable 
to a wave field including significant reflection from 
structures.   On the other hand, Ohnaka et al.  (1988) 
have proposed another kind of numerical computation 
model for a nearshore wave field with a varying current 
and depth.   Their model employs time-dependent mild- 
slope equations, and is applicable to the computation of 
wave deformation due to combined effects of shoaling, 
refraction, diffraction, reflection and breaking as well 
as wave-current interaction. 

In the present study, this wave model is utilized 
as a part of a mathematical model of nearshore 
processes, and the effects of the wave-current 
interaction on the nearshore waves, currents and beach 
change are discussed on the basis of the results of 
numerical computation for two typical cases. Treatment 
of obliquely incident waves and improvement of sediment 
transport formulas are also presented. 

2. BASIC EQUATIONS AND METHODS IN THE MODEL 

2.1 Wave Computation 

Ohnaka et al. (1988) have proposed time-dependent 
mild-slope equations for a wave-current coexisting 
field, which are applicable to the computation of wave 
deformation due to combined effects of the shoaling, 
refraction, diffraction, reflection and breaking as well 
as the wave-current interaction. The equations have 
been derived by separating the mild-slope equation for 
waves coexisting with a current proposed by Kirby (1984) 
into the following two equations expresses in terms of 
the water surface elevation T and the depth-ihteg rated 
f1ow rate vector C: 

m-(9r/a t)+V-(UD+V-(nQ)=0 0) 

dQ/d t +wC2V(r/ff)+ f DQ = 0 (2) 

m= 1+(ff/w)(n-1),    n = C„/C (3j 
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where t is the time, V is the horizontal gradient 
operator, C and Cg are the phase and group velocity 
vectors and U is the ambient current velocity vector. 
The last term in Eq. (2) is the energy dissipation term, 
where fo is the energy dissipation coefficient to be 
defined later; this term has been added in order to 
deal with the wave decay and recovery after breaking. 
The apparent angular frequency w is defined by the 
following dispersion relation for a wave-current 
coex isting field: 

oj = a + k-U,     a = gktanhkh (4) 

where a is the intrinsic angular frequency, Ik is the 
wave number vector, h is the water depth, and g is the 
acceleration due to gravity. If the ambient current 
velocity vector Ul is set to be zero, Eqs. (1) and (2) 
reduce to the original time-dependent mild-slope 
equations proposed by Watanabe and Maruyama (1986). 

We need a value of the wave angle at every point to 
solve the above dispersion relation, Eq. (4). Since 
this wave model is based on the time - dependent 
equations, we can calculate the wave angle from values 
of T and Q which have already been computed in the 
previous cycle over one wave period. 

To determine the location of wave breaking, we 
adopted the breaker index for compound waves proposed by 
Watanabe et al. (1984), which is given by the ratio of 
the orbital velocity at the wave crest to the phase 
velocity as a function of the deepwater wave steepness 
and the local bottom slope. This breaker index will be 
applicable to the wave-current coexisting field by using 
values relative to the current for both the orbital 
velocity and the phase velocity. 

As for the energy dissipation coefficient fo,     Eq. 
(5) proposed by Watanabe and Dibajnia (1988), which can 
express not only the wave decay but also the wave 
recovery in the surf zone. 

where tan/3 is a representative bottom slope around a 
breaking point, ao is a nondimensional coefficient whose 
value is 2. 5, Qm is the amplitude of Q, Qs is the flow 
rate amplitude of breaking waves on a uniform slope, and 
Qr is that of recovering waves in a constant depth 
region.  The quantities  Qs and Qr are expressed as 
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Qs= 7s c n,      Qr=7r c h (6) 

According to experimental data,  the coefficients 7s and 
7r are given by 

7S=0.4(0.57 + 5.3tan/3),  7r=0-4(a/h)b (7) 

where (a/h)b is the ratio of the wave amplitude to the 
water depth at a breaking point. 

It has been demonstrated by Ohnaka et al.  (1988) 
that the above breaker index and the  energy dissipation 
factor are applicable to the computation of cross-shore 
distribution of wave height in a wave-current coexisting 
field with sufficient accuracy. 

2.2 Current Computation 

The current field is calculated by commonly used 
depth-average equations of the mean flow as follows: 

9f, au(h + n , av(h + T)  A ,„, —-—H 1 =0 (HI 
3 t    9 x      3 y 

3U1IT3U,,,3U  3f . n . .  ,„  _, .„. 
-=—+U^r—+V^r—+ g ——+ Rx+Fx-Mx=0 9 
3 t   3 x   3 y   3 x 

9Vxn3Vxy3Vx  3f1D±r   „   n 
3T+u37+V37+g37+Ry+1'y-My=0 <10> 

where (x, y) are Cartesian coordinates in a horizontal 
plane,  (U, V) are the corresponding velocity components 
of the mean flow, f  is the elevation of the mean water 
surface measured from the still water level,  (Rx>  Ry) 
are the radiation stress terms,  (Fx. Fy) are the bottom 
friction terms, and (Mx,  My) are the lateral mixing 
te rms. 

In order to treat the wave-current interaction, 
alternate computations of waves and of currents are 
necessary. An efficient iteration scheme is required so 
as to obtain the convergence of solutions in a 
computation time as short as possible. For this, no- 
current condition is assumed in the first step of wave 
computation as shown in Fig. 1. Then reduced values of 
radiation stresses Ri' are used in the first cycle of 
current computation, because if the actual values of 
radiation stresses Ri calculated from the wave solutions 
are adopted, a large number of iterations are required 
to attain the convergence. Waves in the next step are 
calculated using the resultant reduced current velocity 
Ui.   The reduction rate of radiation stresses  is 
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nth step Iststep 2nd step 3rd s tep 

U u. 
U 

Currents for the calculation of waves 
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Radiation  stresses  for  the calculation  of nearshore  current 

Fig.     1    Iteration   of   computations   for   waves   and   currents. 

gradually decreased for every step, 
values of the radiation stresses and 
are adopted for the calculation of 
waves,    respectively. 

and finally full 
resultant currents 
currents    and       of 

2.3   IMPROVEMENT OF FORMULAS FOR SEDIMENT TRANSPORT RATES 

Watanabe et al. (1986) proposed formulas for 
sediment transport rates under combined action of waves 
and currents on the basis of the power model concept. 
In their formulas the sediment transport rates are 
treated as summation of those due to waves q|w and due to 
currents qc. which are expressed, respectively, by 

Qw= Aw( rb ~ TCr ) F Qb/(/Og) 

qc = Ac(Tb- Tcr )U/(/0 g) 

(11) 

(12) 

where Aw and Ac are nondimensiona1 coefficients, values 
of which should be empirically determined, Zb is the 
maximum value of the bottom shear stress in a wave- 
current coexisting system, z cr is the critical shear 
stress for the onset of general movement of sediment 
grains, uib is the amplitude of the near-bottom wave 
orbital velocity vector, p is the density of water, and 
FD is the net transport direction function. The bottom 
shear stress zt, for a wave-current coexisting system is 
evaluated by the friction law proposed by Tanaka and 
Shuto (1981). Since this friction law is based on the 
bottom boundary layer theory, its applicability to the 
surf zone, where turbulence due to wave breaking is 
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predominant, is questionable. In the present model, 
therefore, the effects of the breaker-induced turbulence 
are incorporated in addition to the bottom shear stress 
as sediment-entraining forces in the surf zone. Namely 
the improved formulas for sediment transport rates are 
expressed as follows: 

qw= (Awdb - Tcr ) + AwbTt } F[juib/(pg) 

qc= {Ac(Tb- Tcr ) + Acb r, } U/(pg) 

(13) 

(U) 

where rt is the breaker-induced turbulent stress, and 
Awb   and    Acb   are     nondimensiona 1     coefficients. The 
magnitude of r t is evaluated from the rate of energy 
dissipation by the following formula based on a 
dimensional    analysis   and   experimental   data: 

!(n fDE)! (15) 

where nfoE is the breaker-induced 
rate per unit area and time. 

energy dissipation 

To examine the applicability of these formulas, 
numerical computation has been conducted for the cross- 
shore sediment transport rates on a beach with initially 
uniform slope of 1/20. Figure 2 shows the comparisons 
between the computation and measurements of cross-shore 
distributions of the transport rates. The upper figure 
is for the case of offshore transport, while the lower 
is  for that of onshore transport.  The  dash-dot  lines 

H o = 11.6cm 

T   =1.5s 

d   = 0.2mm 

qw(cma/s) 

H o = 8. 1cm 

T   =2. 

d   =0. 7mm 

6(m) 

qw(cmVs) 
r 01 

Fig. 2   Cross-shore distributions of transport rates. 
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show the measured transport rates and solid lines 
indicate the calculated ones. The component due to the 
bottom shear stress qWr and that due to the breaker- 
induced stress qwb are shown by the dash and the dot 
lines, respectively. Computed transport rates agree 
fairly   well   with   the   measured   ones. 

The    change    in    local    bottom    elevation,     zt   is 
calculated   from   the   spatial   distribution   of   the   sediment 
transport    rates    by    solving    the    following   equation   for 
the   conservation   of   sediment   volume: 

d zb _  _   d qx '   _   d qY ' 
St 3x dy (16) 

q| = qiw+qic=  (Qx.   Qy) 

where (qx', qy') are the components of the transport 
rates in the x- and y-di rec.t ions corrected in order to 
include   the   bottom   slope   effect,    and   are   given   by 

i i 3 Zh . i        i 9 zb 
Qx   =Qx~ £s  I qx l-g-j-    •   qy  =qy-£s  I Qy I -gj (17) 

where ss is the dimension 1 ess coefficient of the order 
of unity. 

3. NUMERICAL COMPUTATION METHOD FOR WAVES 

Equations (1) and (2) are solved by using a finite 
difference method. For the discretization of the 
convection term due to mean flow in Eq. (1), the 
Alternating Direction Explicit (A. D. E. ) scheme is 
adopted in order to solve explicitly without numerical 
diffusion as follows: 

3(U O] Dm/if m/i~Ui-i/ij'i-i/i 
\     3x    /„„!„,., Ax (]8) 

r;:^=o.5(f! + r!+1),    ri:;;!=o.5(ri + r!:i) 

Namely, as for T at a point (i-1) which is needed for 
the discretization of the convection term at a point 
(i), its values at a time-step (j) are successively 
replaced with values at a time-step (j+1) calculated 
just before. 

Now let us consider boundary conditions in the wave 
computation. The boundary conditions must be imposed on 
all the boundaries surrounding the computation region: 
namely, the offshore open boundary, shoreline boundary, 
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and   two   side   boundaries. 

Waves    on    the    offshore    open    boundary   are    expressed 
as    the    superposition   of    the    incident   waves    £" I  and    the 
outgoing   waves    CR as   shown    in   Eq.     (19). 

r'(x0. y.)=f,'(x,, y»)+f»'(x„, y„) 
(19) 

T i'(x0. y o)= a isin(k x0cos(9 ,+ k y osin0 i — at) 

rR'(x0. y»)=f"T(x.. y„) 
— a isin {(k (xo+Ax)cos0 i + k y osin0 , — a (t — T )} 

where ai is the incident wave amplitude, Ax is the grid 
length normal to the boundary, and the subscript o 
denotes quantities at the boundary. The time shift z 
is   def i ned   by 

r=Axcos0„/C (20) 

where 6n is the direction angle of the outgoing wave 
component measured from the normal line to the boundary. 

The shoreline is treated as a moving boundary to 
include the change in its location caused by the change 
in the mean water elevation due to wave setup, and f is 
kept equal to 0 on this moving shoreline boundary. 

In case of obliquely incident waves, one of the 
side boundaries becomes an incident boundary, while the 
other becomes an open boundary. For the open side 
boundary, the value of f at a point (xo, yo) on the 
boundary at time t is set equal to the one at an 
adjacent inner point (xo, yo~Ay) at time t-r as follows: 

f'(x„,y„)=r,"I(x0.y„-Ay) (21) 

The time shift r is defined by 

r =Aysin0/(C + Ucos0+Vsin<9) (22) 

where 6 is the wave direction angle measured from the 
x-ax i s. 

On the other hand, T on the incident side boundary 
is expressed as follows: 

r '(xo. y o)= a(x0)sin ( j „   kcosfi d x + ksin<9 y „- a t ) (23) 

In this equation, however, the wave amplitude a(xo) is 
unknown because it changes towards the onshore direction 
owing to the shoaling, refraction, breaking, etc. The 
problem is how to determine a(xo) along the boundary. 



WAVE-CURRENT INTERACTION 2451 

In the present study we propota a simple and practical 
computation method, in which the wave amplitude a(xo) on 
the boundary is calculated from the quantities in the 
inner region by assuming the local wave periodicity in 
the alongshore direction. For this, an imaginary 
computation region is attached to the incident side 
boundary of the actual computation region as shown in 
Fig.     3. Assuming    shore- para 1 1 e 1     straight    bottom 
contours   in   this   region,    we   obtain   Eq.     (24). 

Ly= L/sin0 =const. (24) 

where Ly is the wavelength in 
If the width of the imaginary 
waves change periodically in 

the alongshore direction. 
region is set equal to Ly, 
the alongshore direction, 

and consequently the following relation holds: 

f 1. i = CNV, J (25) 

where fi.j is the water surface elevation on the lower 
boundary,' and fNyj on the upper boundary of this 
imaginary region. Using this condition, we can 
calculate <T and Q in the imaginary region without 
specifying any values on the side boundaries. 

Figures 4 and 5 are the results of numerical 
computation in imaginary regions for cases of constant 
depth and of uniform slope,  respectively.  Waves come 
into the region with an incident angle of 60 degrees. 
The width equal to Ly has been divided into 15 grids. 
The left and the right figures respectively show the 
distributions of the normalized wave height and of the 
phase. These results are quite satisfactory and indicate 
the validity of this treatment. 

The values of £" Ny, j thus obtained are given along 

the incident side boundaries in the computation for the 
actual region.  Figure 6 is an example of the wave field 
computed for the case of obliquely incident waves. The 

incident waveY, 
(given) % 

actual region 
(«y, J     (unknown) 

> ** i y*     ^*1   ^>y      ^*^      ,—ii  *Q 

imaginary region 

•^—^~*   J~*—=^*—-J J *» 

£ ,_ j     (unknown) 

Fig. 3   Imaginary region. 

7 
L y = L/sin 6 
I  =const. 
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Fig. 4 Waves in the imaginary region for the case of constant depth. 
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Fig. 5 Waves in the imaginary region for the case of uniform slope. 
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Fig. 6  Computed wave field for obliquely incident waves. 
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left and the right figures show the distributions of the 
wave height and the wave angle, respectively. As 
indicated in these results, incident waves come into 
theregion across not only the offshore boundary but also 
the   lower   side   boundary. 

4.   EXAMPLES OF APPLICATION OF THE MODEL 

The present numerical model has been applied to the 
computations of waves, currents and beach change for two 
typical cases involving the wave-current interaction. 

The first case is for a region around detached 
breakwaters on a beach with initially uniform slope of 
1/25. The incident wave height is 2.5 m, the period is 
8 s and the incident direction is normal to the 
shoreline. It is difficult at the present stage to 
evaluate proper values of the coefficients in the 
sediment transport rate formulas because of 
insufficient experimental and field data. Values of 
Aw=0. 15, Ac=0. 50, Awb=0. 03, and Acb=0. 10 has been adopted 
in this computation according to some experimental 
results. The grid size is Ax=Ay=2. 5 m for the calcula- 
tion of wave field and Ax=Ay=5.0 m for the calculation 
of nearshore current and beach change. Iteration in the 
calculation of waves and currents to include the wave- 
current interaction has been conducted nine times, and 
in the first four iteration steps values of the 
radiation stresses has been increased gradually by 25% 
for each step. 

Figure 7 shows the wave height distribution, where 
the upper half gives the result computed with the wave- 
current interaction, and the lower half without the 
interaction. The differences of the wave height in the 
surf zone and of the breaker line are clearly observed. 
The distribution of the wave direction is shown in Fig. 
8. Refraction due to nearshore current is observed when 
the wave-current interaction is considered. The 
distribution of nearshore currents is presented in Fig. 
9, where reduction of the current intensity due to 
interaction and the shoreline change induced by the wave 
setup are well recognized. The distribution of the mean 
water elevation is presented in Fig. 10. Significant 
wave setup variation near the shoreline without the 
wave-current iteration is smoothed out when the 
interaction is considered. Figure 11 is the resultant 
beach topography, in which significant effects of the 
wave-current interaction appear near the shoreline. 

The second case is for a region around a rip 
channel as shown in Fig.  12.   Figure 13 shows the nor- 
malized wave height distribution.  The difference of the 
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Fig.    7     Distribution of  nor- 
malized wave  height. 

Fig.   8    Distribution of 
wave direction. 

in 
100 - 

100 
100 "500 

Fig. 9 Distribution of 
nearshore current. 

Fig. 10 Distribution of mean 
water elevation. 

100 200 

Fig. II  Distribution of bottom topography. 
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Fig. 12 Initial bottom topography   Fig. 13 Distribution of nor- 
around a rip channel. malized wave height. 
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Fig. 14 Distribution of 
nearshore current. 

Fig. 15 Distribution of 
Bottom topography. 

breaker lines is clearly seen. The distribution of 
nearshore currents is presented in Fig. 14. The 
computation region is extended along the shoreline by 
the wave setup and in this expanded region a strong 
longshore current is observed. Rip current velocity is 
considerably reduced when the wave-current interaction 
is included. Figure 15 shows the resultant beach 
topography. In this case the sand transport due to 
waves has been ignored in order to emphasize the 
difference induced by the currents with and without the 
wave-current interaction. It is seen that the beach 
topography change is reduced when the wave-current 
interaction is considered. 
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5. CONCLUSIONS 

A numerical computation model for nearshore waves, 
currents and beach change with wave-current interaction 
was presented, and the influences of the wave-current 
interaction were examined. It was shown that the wave- 
current interaction affected the wave field, current 
field and beach change in the nearshore zone. A 
treatment of the side boundary condition for the case of 
obliquely incident waves and improvement of sediment 
transport rate formulas were also presented, and their 
validity was demonstrated. 
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