
CHAPTER 82 

Irregular Waves on a Current 
H.-H. Priiser and W. Zielke 1 

1 Introduction 

In coastal areas interacting currents and waves are quite frequent. The currents 
are generated by the tides or the discharge of a river; the waves are irregular short 
crested, generated by the wind. A suitable numerical wave model for this situation 
is presented in this paper. It is based on the Boussinesq-Wave-Equations (BWE) 
which were extended to simulate the influence of a current on a wave as well as 
the effects of nonlinear wave-wave interaction in a propagating wave spectrum. 

An analytical approach to describe wave-current interaction was given by 
Longuet-Higgins/Steward (1960) [3]. They investigated linear small amplitude 
waves in a moving medium and introduced the concept of radiation stress to de- 
termine the change of wavelength and wave amplitude as a function of the current 
and the direction of wave propagation. Their fundamental work was the basis for 
the development of various numerical models, which were reviewed recently by 
Jonsson (1989) [2]. Most of these models are restricted to linear (small amplitude) 
wave theory. 

The wave climate in shallow water is generated by the influence of bottom 
topography as well as by nonlinear wave-wave interaction in a propagating wave 
spectrum, which cannot be described by linear wave theory. Instead, such weakly 
nonlinear waves are frequently modeled using the BWE. The development of 
models based on these equations first began in the late 70's. Since then, a number 
of studies have been carried out to verify their capabilities. It has been shown that 
they are able to simulate accurately combined refraction, diffraction, reflection 
and shoaling (see for example Madsen/Warren (1984)[4] as well as the nonlinear 
wave-wave interaction in a wave spectrum propagating over an uneven bed (see 
for example Priiser/Schaper/Zielke (1986)[7]). Boussinesq wave models have now 
become a practical tool for engineering applications. 

In this paper, a numerical model based on an extended form of the BWE which 
takes into account the influence of an ambient current on waves is used to inve- 
stigate irregular waves propagating and refracting on an ambient current. After 
presenting the equations, a comparison based upon linear (small amplitude) wave 
theory is conducted to illustrate the range of application. The numerical model 
was used to simulate irregular waves with a current in a flume and in a basin. The 
results were in good agreement with the solution of Longuet-Higgins/Steward. 
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2 The mathematical model 

2.1 The Extended Boussinesq-Wave-Equations 

Nonlinear wave behaviour in shallow water and in intermediate depth can be 
simulated using the BWE. These equations have been extended in order to include 
the effect of wave-current interaction, which is often necessary in coastal areas. 
Mathematically, the general case of waves propagating through a current field 
over an arbitrary bottom topography is a complex initial boundary value problem. 
However, since the length and time scales of the wave motion are usually much 
smaller than those of the current, it is possible to solve the current field and the 
wave field in two separate steps2. Consequently, for the derivation of the extended 
BWE, it is assumed that the current field is known from numerical simulations 
or measurements. A step by step description is given by Priiser (1991)[6]. The 
extended BWE used in this paper and the equation of continuity are as follows 
(the index '0' refers to the ambient current and '*' to the combined flow of waves 
and currents. Variables without indices refer to waves only) : 

D2 D 
u,t+u*u,x+v*u,y+g(,x   =    ——(u,xxt

Jrv,xyt) + --{(u,tD),xx+(v,tD),Xy) 

D2 D2 

+u0-—-{u,xxx +v,xxy) + v0—-(u,xxy +v,xyy )     (1) 

D2 D 
V,t +U*V,X +V*V,y +g(,y     = —(u,xyt +V,yyt ) + ~((«,* D),xy +(v,t D),yy ) 

D2 D2 

+u0-—(u,xxy +v,xyy) + v0—(u,xyy +v,ym )     (2) 

(D + r,),t+(u*(D + V)),x+(v*(D + V)))y   =   0 (3) 

with: u* = u + wo       "* = v + v0 

The fluid velocities u*, v* are comprised of the ambient current field «o, ^o and 
the wave flow field u, v. The current appears in the convective terms of the 
left hand side of the equations and also produces additional third order terms. 
The numerical BOussinesq-WAve-Model (BOWAM) which was available for the 
solution employs a formulation involving fluxes and surface elevations [8] [9]. 
Therefore, it was necessary to transform the equations by substituting h = D + 
(,p = uh and q = vh. The equations were solved by an implicit third order 
corrected finite difference method using two time levels and central differences. 

2.2 Range of application, harmonic waves 

The range of application depends on the wavelength to water depth ratio 
L/D. Shallow water is defined if the wavelength is larger than 20 times the water 
depth whilst deep water is denned if the wavelength is smaller than twice the 

2cited from Jonsson[2] 
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wavelength; the region between these limits is referred to as intermediate depth. 
The BWE are limited to shallow water with an extension to include intermediate 
depth. In a nonlinear study with periodic waves, McCowan (1987)[5] has shown 
that the equations are valid provided the wavelength is at least 6 times the water 
depth. In this paper, the range of application for the extended BWE will be 
checked by a comparison with linear (small amplitude) wave theory. In a first 
step, the dispersion relations will be investigated. These results are necessary to 
subsequently verify the extended BWE using analytical solutions of wave-current 
interactions. 

The wave profile is given by a harmonic function with amplitude a, wave 
number k = 1-KJL and frequency u> = 2ir/T. 

f](x,t)   =   a sm(u>t - kx) (4) 

For simplicity, the investigation is limited to the one-dimensional case with con- 
stant water depth. The BWE and the equation of continuity reduce to: 

u,t+(u0 + u)u,x+gr),x--D
2u,xxt--D

2u0u,xxx   =   0 (5) 

V,t +UoV,x +Du,x   =   0 (6) 

The velocity u can be eliminated by differentiating (5) with respect to x and 
substituting (6) in (5). Finally, nonlinear terms of order 0(a2) are neglected. 

D2 

~n,tt +{gD - ul)i],xx -2u0n,xt + — (r),xxU +2u07),xxxt +ulr}>xxxxJ    =   0 

Inserting the wave profile (4) into the above equation gives Equ. (7). Nontrivial 
solutions for the frequency u> (8) are obtained if the first parenthesis is set to zero. 

k2gD    \ 
u2 - 2kuo& + k2ul - 1 m,2 I asin(u>£ - kx)   =   0 (7) 

a>i,2   =   ku0 ± k'9D (8) 1 + \k2D2 

The sign in front of the square root is chosen according to whether the wave is 
propagating in the direction of the current u0 or in the opposite direction. The 
differentiation of ui with respect to the wave number k gives the group velocity: 

Table 1 summarizes the analytical formulae for the dispersion relation of the 
linear theory and of the Boussinesq theory in the case of small amplitude waves. 
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and Steward. The wavelength in the presence of a current is given by an implicit 
function of the corresponding wave in still water (frequency u>\ phase velocity c) 
and the current u0: 

Lc = 2irkc   with   (w - kcu0)
2 = Vwc (10) 

The change of wave amplitudes depends on the manner in which the ambient 
current is generated. Longuet-Higgins/Steward investigated two different situa- 
tions, which were defined as upwelling from below and inflow from the sides. 
These definitions will be explained in the Chap. 3.1. In the case of upwelling from 
below, an adequate formula describing the situation with a current (ac, Lc, Gc) 
and the situation in still water (a,L,G) is given by Brevik/Aas (1980)[1). The 
change of amplitudes tends towards infinity as the Froude number tends towards 
FT -> -0.5: 

1 + G :(!-£?) (") a \{T~ ^-)(l + G*) + 2fV        ic c 

The parameters G,GC,LC and c can be substituted by the dispersion relations 
summarized in Table 1. Fig. 2 shows the change of wavelength Lc/L and Fig. 3 
shows the change of wave amplitude ac/a as a function of the Froude number 
Fr = uo/VgD for three different wavelengths (L/D = 20,10,6). The solid lines 
indicate the results obtained from the formulae (10) and (11) using linear theory 
whilst the dashed line indicate the results from Boussinesq theory. A negative 
Froude number indicates that the current and waves are propagating in opposite 
directions. The formulae are evaluated for Froude numbers -0.3 < Fr < 0.5. For 
most coastal engineering purposes, however, Froude numbers lie in the range of 
-0.2 < Fr < 0.2 . With regard to the change of wavelength Lc/L, the following 
can be stated: 

• The wavelength increases if the direction of wave propagation is the same as 
that of the current (Fr > 0) and decreases in the case of opposite directions. 
This effect is more pronounced in deeper water. 

• The Boussinesq approximation is very good for the complete range of Froude 
numbers in Fig. (2) provided the wavelength is larger than 10 times the 
water depth. 

With regard to the change of wave amplitude ac/a, the following can be stated: 

• The wave amplitude increases if the direction of wave propagation and that 
of the current are different (Fr < 0) and decreases when the directions are 
the same. 

• The influence of the relative wavelength L/D on the change of amplitudes is 
very slight for Froude numbers greater than zero, but significant for Froude 
numbers less than zero. 
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linear theory Boussinesq theory 

phase velocity 

Cc = Ug + c 

group velocity 

cg = u0 + |c(l + G) 

cL = v^D^/^tanhfcD 

pi            2kD 

rB _   rzf) 1     i 

rB       1-1*2D2 

"•     ~" l+±k2D2 u    ~ sinh2fc£> 

Table 1: Dispersion relation in linear and Boussinesq theory 

The superscript c indicates currents, L indicates Linear theory, and B indicates 
Boussinesq theory. The comparison indicates a high degree of similarity between 
linear and Boussinesq theory. If an ambient current is present, then the phase 
velocity cc and the group velocity cg are superposed on the current w0 and the 
corresponding velocity in still water. For shallow water conditions (kD —> 0), 
linear and Boussinesq theory are identical. In deeper water however, the solution 
obtained by Boussinesq theory is an approximation to linear theory. 
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Figure 1: Dispersion relation in linear and Boussinesq theory as a function of the 
parameter kD 

Fig. 1 displays the relative errors of the phase velocity Ac (solid line) and the 
group velocity Acg (dashed line) as a function of the parameter kD. As expected, 
an excellent agreement is found between linear and Boussinesq theory for shallow 
water conditions (L/D > 20, kD < 0.3). Moving into deeper water (kD > 0.3), 
Boussinesq approximation for the phase velocity is much better than for the group 
velocity. A priori we will allow errors in phase and group velocity less than 5%, 
which gives a limit for the range of application of kD < 1.0 (see Fig. 1). This is 
in agreement with McCowan who indicated that the wavelength should be larger 
than 6 times the water depth. 

The change of wavelength and wave amplitude due to the ambient current 
can be determined by analytical solutions based on the work of Longuet-Higgins 
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-0.30       -0.20       -0.10       -0.00        0.10 0 .20 0.30 0.4-0 0.S0 
Fr 

Figure 2: Change of wavelength due to an ambient current. Comparison with the 
corresponding wavelength in still water. 

• For negative Froude numbers, the wavelength must be larger than 10 times 
the water depth. 

In conclusion: Within limits of linear wave theory, extended B WE are valid for 
simulating the interaction of an ambient current on waves if the corresponding 
wavelength in still water is larger than 10 times the water depth and the Froude 
number is in the range of -0.2 < Fr < 0.2. If the corresponding wavelength in 
still water is smaller than 10 times the water depth and larger than 6 times the 
water depth, the extended BWE are applicable only if wave and current are in 
the same direction. If the waves are even shorter than 6 times the water depth, 
they are outside the range of Boussinesq theory, independent upon the current 
direction. 

2.3 Range of application, irregular waves 

The investigation on the basis of the dispersion relation, as presented in Chap. 
2.2, is neccessarily limited to harmonic waves with particular frequencies and 
wavelengths. The natural sea state, however, contains various interacting wave 
components. There is a need to define, which type of spectra and which frequency 
range can be modeled properly with BWE. Due to the nonlinear character of the 
waves there is no analytical theory available to define the range of validity. On 
the basis of experience, which has been obtained in a quite number of BOWAM- 
Simulations the following statements can nevertheless be made: 

In irregular wave trains short waves are often related to longer waves. One ex- 
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Figure 3: Change of wave amplitude due to an ambient current. Comparison with 
the corresponding wave amplitude in still water. 

ample is the behaviour of wave groups. Hydraulic measurements and the theory of 
biharmonic waves have shown, that bounded-long waves as well as bounded-short 
waves are generated. Another example is the propagation of a wave spectrum from 
deeper to shallower water. A transformation of energy towards higher harmonics 
can be observed. The centre-row of Fig. 6 demonstrates this quite clearly. In 
both cases, the high frequency components (short waves) which are created in 
the transformation may be outside of the range of validity of BWE as defined 
in Chap. 2.2. However, they can be properly modeled with BWE as long as the 
corresponding long waves are in the range of validity. 

3 Waves on a current in a flume 

3.1 Generation of the current 

The current can be generated by pumping water into the flume through an 
inlet (or outlet) located at the bottom or in the walls. In the following it will be 
assumed that this volume flux is constant in time. The current velocity w0 can 
be changed, however, by increasing or decreasing the cross-section of the flume. 
The change of wave amplitudes caused by the ambient current depends on how 
the current is generated. In the case of an upwelling of water from below (inlet 
at the bottom, varying water depth), it is larger than in case of inflow from the 
sides (inlet in the wall, narrowing of the width of the flume). Both cases will 
be investigated numerically. In Fig. 4, the corresponding analytical solutions for 
shallow water conditions and constant water depth are shown. A negative current 
with a Froude number of Fr = — 0.2 shows an increase of the amplitudes of about 



IRREGULAR WAVES ON CURRENT 1095 

10% for the case of inflow from the sides and of about 25% for the case of upwelling 
from below. The change of wavelength is the same in both cases. 

i 1—-I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
-0.30      -0.20      -0.10      -0.00       0.10        0.20        0.30 0.4-0        0.50 

Fr 

Figure 4: Change of amplitudes in shallow water. Comparison of the situations 
upwelling from below, inflow from the sides and BOWAM-Simulation. 

3.2 Inflow from the sides 

The behaviour of a wave spectrum propagating in a wave flume with constant 
water depth was investigated using the BWE. The upper part of Fig. 5 displays 
the experimental set-up: A numerical wave flume with a wave maker on the left 
hand side and three velocity/water elevation gauges A, B, C is shown. The water 
depth (D = 0.5m) as well as the width of the flume are constant. A number of 
inlets in the walls enable an ambient current to be generated between the gauges 
A and B by an inflow from the sides. The current uo is assumed to be zero at 
gauge A, increasing linearly to gauge B and remaining constant between gauges 
B, C. 
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Figure 5: Experimental set-up: Waves with an ambient current in a wave flume 
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Pierson-Moskowitz spectra are introduced into the flume by the wave maker. 
The simulated time series of the surface elevation r) are recorded at the gauges. 
These were transformed by FFT into the frequency domain to investigate the 
change of the spectral shape along the flume. Fig. 6 displays the calculated wave 
spectra at the gauges A, B, C for different ambient currents. The total amount 
of energy is given by the spectral moment of zero order m0. Assuming a Rayleigh 
distribution, the significant wave height can be calculated from: 

H, = Hm0   =   V^ (12) 

The spectra along the centre-row of Fig. 6 are the results of a simulation in still 
water (Fr = 0.). The significant wave height m0 is the same for all gauges. For 
deep water conditions the incoming Pierson-Moskowitz spectrum is stable. In Fig. 
6 the wavelength corresponding to the peak period of the spectrum (Tp = 4.5s) 
is about 20 times the water depth, which indicates shallow water conditions. 
Therefore, due to nonlinear wave-wave interaction in shallow water, the spectral 
shape changes considerably. Higher harmonics and low frequency components 
bounded to wave groups have been generated. This is visible in the spectral shape. 
A double peaked spectrum and lower frequency components not included in the 
input spectrum appear at gauge C. The numerical simulation without a current 
has been verified very successfully by hydraulic measurements for a number of 
different wave spectra (Priiser/Schaper/Zielke [7]). It can be used to estimate and 
compare the influence of the ambient current. 

The first and third row of Fig. 6 display the influence of wave-current in- 
teractions. The Froude number of the ambient current was Fr ±0.1, i.e. the 
investigation deals with waves propagating in the direction of the current as well 
as in the opposite direction. The recorded time series at gauge A is equal in both 
cases because the current is zero at this location. The wave spectrum at gauge 
A is given in the centre-row. The influence of the ambient current on the wave 
spectrum can be separated into two phenomena: 

The first one concerns the change of significant wave heights H, between gau- 
ges A and B. If waves and currents are propagating in the same direction, the 
amplitudes i.e. the energy corresponding to the individual frequency components 
have decreased. The spectral moment of first order changes from m0 = 8.6 • 10~5 

to 7.8 • 10-5 (the reverse effect occurs if waves and current are propagating in 
opposite directions m0 = 8.6 • 10~5 to 9.6 • 10~5 ). This gives significant wave 
height ratios of HCJH, — 0.95 and HCJH, = 1.06, respectively). Further investi- 
gations show, that these ratios are nearly independed upon the incoming wave 
height H,, but they do depend on the peak-period of the spectrum. This is in 
agreement with Fig. 11. For shallow water conditions and a current, generated 
by an inflow from the sides, the results of BOWAM are very close to the analy- 
tical solution, as shown in in Fig. 4. The second phenomenon concerns nonlinear 
wave-wave and wave-current interactions. These can be obtained by comparing 
the wave spectra at the gauges B and C for the three test conditions displayed 
in Fig. 6. Double peaked spectra are generated and the total amount of energy 
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Figure 6: Wave-current interaction in the frequency domain 

is constant for each test. However, the behaviour of the peaks at a frequency of 
« 0.2Hz and « OAHz is different. The first peak decreases if waves and current 
are propagating in the same direction and increases otherwise. This is again in 
agreement with Fig. 4. The behaviour of the second peak is almost the reverse of 
the latter. It remains constant or increases if waves and current are in the same 
direction and decreases otherwise. This cannot be explained by the theory of 
Longuet-Higgins/Steward. Although the significant wave height of the spectrum 
is relatively small compared to the water depth (Ha ss 4.cm D = 50.cm), the 
nonlinear wave-wave interaction between the individual frequency components 
dominates the influence of wave-current interaction. Contrary to the first pheno- 
menon there is a significant dependency on the incoming wave height, indicating 
the necessity of nonlinear numerical simulations. 
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3.2 Upwelling from below 

The bottom picture of Fig. 5 displays the experimental set-up. This is almost 
the top picture, except that a slope is present between gauges B and D and the 
water depth reduces from 50.cm to 30.cm. Consequently, the wave transformation 
is even more complicated. Due to the different cross-sections, the ambient current 
is larger at gauge D than at gauge A. The change of the current takes place above 
the slope by an upwelling of water from below. In addition to this, the propagating 
wave spectrum shoals over the slope. 

Assuming a linear, monochromatic wave, the change of its amplitude between 
gauges B and D can be calculated using the formula3 

\ 

K,a + \cB{l + GB)LB)cD 

(U0,D + \cD{l + GD)LD)cB 
K    ' 

If the ambient current is zero at both gauges («O,B = WO,D = 0), then (13) gives 
the shoaling coefficient. If u0,B = 0 and the water depths are equal at both gauges, 
then (13) is identical to Equ. (11). It is important to notice that the change of 
amplitudes results from a combination of wave-current interaction and shoaling. 

As indicated in Chap. 3.2, the significant wave height of the spectrum H, is 
affected by an ambient current as predicted by the analytical solution of Longuet- 
Higgins/Steward. This chapter is to investigate further changes in a combined 
current-shoaling situation. A suitable numerical model has to take into account 
that waves are transformed by an upwelling of water from below. In other words, it 
has to take into account a vertical component of the fluid velocity above the slope. 
Although the variables of the extended BWE are the depth-averaged horizontal 
velocities u, v, a vertical velocity w varying linearly from the bottom to the 
surface is assumed during the derivation. This enables the equations to simulate 
the wave behaviour above the slope which is influenced by water upwelling from 
below. 

Several numerical simulations have been carried out using a Pierson-Moskowitz 
spectrum with different peak periods Tp and different significant wave heights H,. 
Also, a comparison is made using Equ, (13), involving a monochromatic wave with 
a period equal to the peak period of the spectrum. Table 2 summarizes the results 
for a spectrum with Tp = 4.5s and different current conditions: Column BOW AM 
displays the results of the numerical model whereas column combined shows the 
results of the analytical solution (13). It is common practice in simple linear wave 
modelling to approximate combined effects as a superposition of individual effects. 
For comparison, column k, and column ku are the results of separate shoaling and 
separate wave-current interaction, respectively. Column k,xU = k,ku displays the 
results of the linear superposition. 

It can be stated that the results of BOWAM are in very good agreement 
with the analytical solution. The linear superposition of separate shoaling and 

3This formula has been developed based on the concept of the conservation of wave action. 
For details, see Jonsson [2] and Pruset[6]. 
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gau 

tto 

geB 
Depth 

gauge D 
u0      Depth BOWAM combined       k, Ku "'j.ii 

0.100 
-.100 

0.50 
0.50 

0.167 
-.167 

0.30 
0.30 

1.068 
1.200 

1.070 
1.192 

1.125 
1.125 

0.970 
1.036 

1.091 
1.166 

0.150 
-.150 

0.50 
0.50 

0.250 
-.250 

0.30 
0.30 

1.039 
1.241 

1.048 
1.232 

1.125 
1.125 

0.957 
1.057 

1.077 
1.189 

Table 2: Combined modelling of waves on a current and shoaling 

separate wave current interaction is a relatively good approximation regarding 
wave heights. It should not be used, however, if one is interested in locating a 
breaker zone, which depends on the ratio of wave height to water depth; irregular 
wave trains will produce a time-varying breaker zone. This has to be simulated 
in nonlinear wave models. 

4 Waves on a current in a basin 

The corresponding two-dimensional extension of the test described in Chap. 
3.2 will be investigated here. In a wave basin of constant water depth (D = 
50.cm), a Pierson-Moskowitz spectrum (Tp = 4.5s H, sa 4.cm) is generated by 
the wave maker and propagates from left to right. An ambient current with a 
Froude number of Fr = ±0.1 is assumed in a part of the computational domain. 

The situations: a) waves and current propagating in the same direction; b) no 
current; c) waves and current propagating in opposite directions are displayed 
from top to bottom in Fig. 7. 

The wave crests at a specific time step are given on the left hand side. The 
darker the wave crests, the higher is the surface elevation. A numerical, directional 
wave gauge is placed in the basin to obtain the spectral shape of the spectrum and 
the distribution of the mean direction as a function of the frequency. In the case 
of still water, the transformation is the same as displayed along the centre-row 
of Fig. 6. The mean direction is constant at 0 = 90° and the spectral moment 
m0 = 8.6 • 10~5. 

In the presence of a current, the wave fronts change their direction. In the 
case of waves and current in the same direction, the waves are refracted with 
an average angle of A© = 10° at the gauge (For waves and current in opposite 
directions the angle of refraction is A© = 12.°). The quantity A© depends on 
current and frequency. High components are refracted more than low components. 

At the transition between still water and current, the crests are drawn apart. 
This produces a two-dimensional effect in which wave energy propagates along 
the crests. A decrease or increase of the spectral moment m0 was recorded. This 
depends on the current condition and on the position in the computational do- 
main. The change can be very much higher than predicted in the one-dimensional 
test (Chap. 3.2). Fig. 7 shows that in the case of waves and current in the same 
direction, the spectrum remains single-peaked (m0 = 5.1 • 10~5) at the chosen 
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gauge. A double-peaked spectrum (m0 = 11.5 • 10~6) is generated if waves and 
current are in opposite directions. 

The numerical model was also used to simulate arbitrary angles between the 
current and the wave direction. Although, the results were very promising, they 
are not presented here because corresponding hydraulic measurements were not 
available for verification purposes. 

5 Conclusions 

A numerical model based on the extended Boussinseq-Wave-Equations (B WE) 
was applied to simulate irregular waves with an ambient current. The current al- 
ters wave height, wavelength and the direction of wave propagation. The equations 
may used to simulate the generation or the change of a current by an inflow from 
the sides as well as by an upwelling from below. 

The range of validity has been checked, comparing Boussinesq theory with 
linear wave theory. Regarding harmonic waves, the BWE are valid provided the 
wave length is at least 10 times the water depth and the Froude number of the 
current is smaller than ±0.2. Regarding irregular waves, even shorter waves of a 
spectrum can be simulated as long as they are related to long waves (bounded- 
short waves, the generation of higher harmonics). 

The change of the significant wave height of a Pierson-Moskowitz spectrum can 
be predicted by the theory of Longuet-Higgins/Steward using a monochromatic 
wave with the peak period of the spectrum. The change depends on the period of 
the wave, the strength of the current and the water depth. The wave amplitude 
itself has a minor effect. The results of the numerical model are in very good 
agreement with the theory. The numerical model also simulates the development 
of the spectral shape. 
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Figure 7: Waves with a current in a basin 




