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ABSTRACT 

A mathematical model of wave transformation over a submerged permeable 
breakwater is developed on the basis of the equations for waves on a porous layer 
which are newly derived under the mild-slope assumption. The model equation is 
given as a two-dimensional elliptic equation analogous to the mild-slope equation on 
an impermeable bed. The model of wave breaking on a submerged permeable break- 
water is proposed on the basis of the modified mild-slope equation. The validity of 
the model is confirmed through comparison with the experiments for a trapezoidal 
breakwater and with strict solution for a rectangular breakwater. 

I.    INTRODUCTION 

A submerged breakwater has been shown as an effective wave control structure with 
less environmental impacts. Prediction of the wave transformation over a submerged 
permeable breakwater and the resultant effects on wave action is important in planning 
and designing structures for the coastal protection. So far, investigations have mostly 

been carried out on the basis of laboratory and field experiments such as Dattari et al. 

(1978). Though some theoretical studies were made by Liu (1973) and others, a simple 
and general predictive model has not been established yet. 

In this study, a model equation is derived based on the mild slope assumption to 

analyze the transformation of waves over a submerged permeable breakwater. The 
resultant equation is given as a two-dimensional elliptic equation and is analogous to 
the standard mild-slope equation for an impermeable bed. A mathematical model 
based on the present mild-slope equation is used to compute the wave transformation 
for a general bottom configuration. The applicability of the model is demonstrated 
through comparison with laboratory data obtained from model experiments in a wave 

flume. The validity of the model is also examined by comparing with the strict solution 
for a rectangular submerged breakwater. 
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3D. Eng., Associate Professor, ditto. 
3D. Eng., Professor, ditto. 

1060 



WAVE TRANSFORMATION MODELING 1061 

-Ai 

'    • '   " '"—^-i--"--i-" •"'•   "-^ji*4Ss«t4i ' 

Fig.l Definition sketch; waves propagating over a horizontal porous layer. 

II.    MODELING OF WAVE TRANSFORMATION 

The mathematical derivation of the basic equation for the transformation of non- 
breaking waves over an inclined porous layer is given in Rojanakamthorn et d. (1989). 
In the following, the derivation is briefly reviewed and the model of breaking wave 
transformation is formulated. 

2.1 Wave Transformation over an Inclined Porous Layer 

The analytical approach starts with the formulation of the wave transformation 
over a horizontal porous layer. A definition sketch is shown in Fig.l in which the depth 
of water, h\, and the thickness of the porous layer, hp = ho — hi, are constant. The 
governing equations describing the motion of an incompressible fluid inside the porous 
medium under the assumption of irrotational flow can be shown by Eqs.(l) and (2) in 
terms of the seepage velocity potential <j>a and pressure ps. 

0 (1) 

dt 
+ -{Ps + 7*) + /p<^s = 0 

P 
(2) 

where Cr is the inertia coefficient, p the mass density of water, 7 the unit weight of 

water, /p the linearized friction factor, a the angular frequency of the periodic wave 
motion, V = (d/dx,d/dy, d/dz) the gradient operator, and d/dt the partial differential 
operator with respect to time. The friction factor fv is evaluated from the Lorentz' 
condition of equivalent work. The relationship can be expressed as 

/P = <rJvS?e\it.\>dtdV 
(3) 

in which us is the seepage velocity vector, e the porosity of the medium, v the kinematic 
viscosity, Kp the permeability, Ct the turbulent friction coefficient, V the volume under 
consideration, and T the wave period. 

Equations (1) and (2) represent the Laplace equation and the unsteady Bernoulli 
equation for a seepage flow, respectively. The equations for the flow outside the porous 
medium can be obtained by substituting the coefficient Cr by unity and the friction 
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factor /p by zero. The governing equations yield a potential flow problem. An analyt- 
ical solution is derived for a monochromatic progressive wave train. The solutions for 
the velocity potentials were obtained as follows. 

_ igrj e sinh(khp) exp{k(z + ^1)} — ficosh{£(z + h\)} 

a esmh(khv,)ex'p(khi) — <5cosh(&/ii) 

igr/ cosh{&(z + ho)} 

where 

a  esinh(fc/ip)exp(£/ii) — (5cosh(fcA1) 

r\ = a • exp{i(at - kx)} 

- esinh(khp) — (Cr — ifp)cosh(khp) 

(4) 

(5) 

(6) 

(?) 

in which a is the amplitude of the incident wave prescribed at x = 0, g the gravitational 
acceleration, and k = £r — ik\ the complex wave number which is determined from the 
following relationship. 

a   = gfc 
iexp(khi)sinh(khp) — 6sinh(khi) 

: exp(khi) smlx(khp) — 6 cosh(khi) (8) 

It is noted that without a porous layer the above results reduce to the following 
linear wave solution (9) and the dispersion relation (10). 

_ igr] cosli{k(z + ho)} 

a       cos'h(kho) 

a2 = gk tanh(£/io) 

(9) 

(10) 

A mild-slope equation is then derived for an inclined porous layer in a general 
bottom configuration. Referring to Fig.2 in which waves propagate over a submerged 
permeable breakwater, the governing equations derived from the equations of an in- 
compressible fluid are expressed in terms of the amplitudes of velocity potentials as 

Vfc + 
92$ 

= 0 
o 32$s 

Vf/5,, + -^ = 0 
az2       ' h s    9z2 

where Vh = (d/dx, d/dy) is the horizontal gradient operator, and 

(11),(12) 

Fig.2 Definition sketch; waves propagating over a submerged permeable breakwater. 
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$ = (ig??/<x)G(z)   , $s = (igfifcr)H(z) 

in which rj is the complex amplitude of the water surface displacement, and 

esinh(fc/ip)exp{fc(z + hi)} — 5cosh{fc(z + hi)} 
G(Z): 

H(z) 

esinh(fc/ip)exp(A:/ii) — ficosr^fc/ii) 

cosh{fc(z + ho)} 

esinh(fc/ip)exp(fc/ii) — <5cosh(fcfti) 
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(13),(14) 

(15) 

(16) 

Equations (13) to (16) are assumed to be applicable to the slowly varying depth 

condition by using the local values of k, ho, hi and hp. The mild-slope equation is 
derived by the vertical integration of Eqs.(ll) and (12) after multiplying by appropriate 
functions. 

/" J-h 
G   V£$ + a2$ 

J7* dz + j    '   e(Ct-i/p)ff (Vj*.+ a2$s 
dz2 iz = 0     (17) 

By utilizing the relevant boundary conditions and the solutions of $ and $s with 
the form of Eqs.(13) to (16) are invoked and the variations of depth are taken into 
consideration, Eq.(17) is thus expressed as 

Vh /     G2Vhr}dz + I     k2G2f!dz 
J—h\ J—hi 

+e(Cr - i/p)   Vh /    ' H
2Vhf,dz + f    ' k2H2fjdz 

/     GV2Gfidz + GVhG-Vhh!fi 
J-hi 

(Cr-»/p)|/_"ftl HViHr)dz + HVhH • VhM 

+HVhH • VhMUo (18) 

The assumption of slowly varying depth, i.e., the mild slope assumption is imposed. 
The contributions of the terms on the right-hand side of Eq.(18) which are the second 

order of the bottom slope are considered negligible. The following elliptic equation is 
finally obtained. 

Vh(aVh?)) + k2afj = 0 (19) 

where 

a = on + e(Cr - ifp)a2 (20) 

«i = fih1{(p2/2khi){-l - exp(-2khi)} - (j3j/2khi){l - exp(2A;/i1)} - 2/32/?3]    (21) 

a2 = lp!hp\, + ^M 

/?i = [eexp(khi)sinh(khp) — 5cosh(fc/ij)]  x 

(22) 

(23) 
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ft = eexp(ifeAi) sinh(khp) -(1/2)6 exp(fc/»i) (24) 

ft = (1/2)5 exp(-Wi) (25) 

Equation (19) is the mild-slope equation describing wave transformation on a 
mildly sloping porous layer and is an extension of the standard mild-slope equation 
derived by Berkhoff (1972) for an impermeable bed. 

2.2 Breaking Wave Transformation on a Submerged Breakwater 

(1) Modified mild-slope equation on porous layer 

A submerged breakwater usually has a principal function of premature breaking 
of high waves to diminish the heights of waves transmitted to the shore. To develope 
a general predictive model for the breaking wave transformation, Eq.(19) is modified 
by incorporating an energy dissipation term as 

Vh(aVhr/) + (k2a - ivo>fD)fj = 0 (26) 

where /D is an energy dissipation function. The energy dissipation function /D due to 
wave breaking will be derived on the basis of energy equation. 

(2) Energy dissipation function of breaking wave 

For a uniform porous layer and water depth condition, the value of a is constant 
and independent of horizontal coordinates. Equation (26) then reduces to 

Vlfi + (k2 - iafD)rj = 0 (27) 

The complex amplitude of the water surface displacement is now defined in terms of 
wave amplitude o as 

f) = a- exp(-«x) (28) 

where x is the phase angle. 

Substituting Eq.(28) into (27) and grouping the real and imaginary terms, we 

obtain 

VhX " VhX = *?{1 - (MAr)2} + (l/a)Vja (29) 

Vh(a
2VhX) = -(2krh + crfD)a2 (30) 

The contribution from the last term in Eq.(29) may be considered negligible and the 
ratio k{/kT may be small, and hence Eq.(29) is approximated as 

VhX = (ktcosip, fcrsin^>) (31) 

where <p is the wave angle. If a unidirectional wave is considered, Eq.(30) reduces to 

A(a2) = -(2*i+^V (32) 
an fcr 

where n represents the coordinate in the direction of wave propagation. 

Equation (32) is an energy equation of waves propagating over a horizontal porous 
layer in which the wave energy is dissipated due to porosity and wave breaking. The 
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standard mild-slope equation describing the transformation of breaking waves on an 
impermeable bed is shown by Eq.(33). 

Vh(ccgVh»j) + (fc2ccg - icr&)fi = 0 (33) 

where /£, is the energy dissipation function, c the wave celerity, and cg the group 
velocity. The energy dissipation function /p due to wave breaking was proposed by 
taking into account the processes of wave decay and recovery (Watanabe and Dibajnia, 
1988). 

*> = a^C'\H\f^ (34) 

where 

4' = (\fl\fh),    < = 0.4(0.57 + 5.3tanC')>    #[ = 0A(\r,\/h)h (35), (36), (37) 

in the above equations aD equals 2.5, tan (' the bottom slope at the breaking point, 
and the subscript b denotes the value at the breaking point. The parameters t?'s and 
i9'r are expressed according to the results of experiment. 

Under the same condition of uniform water depth, an energy equation of breaking 
wave transformation is derived in a similar fashion. The equation is expressed as 

l^ = Jf/ <«> 
Supposing that the mechanism of energy loss due to wave breaking on a sub- 

merged permeable breakwater is similar to those on an impermeable bed, we obtain 
the following expression through comparison of Eqs.(32) and (38). 

/D = {kr/ecs)& (39) 

Equation (39) gives an energy dissipation function due to wave breaking on an 
inclined porous layer. Here, an effective depth is introduced to take into account the 
porosity of the structure. 

h[ = hi + ehp (40) 

The energy dissipation function due to wave breaking on a submerged permeable 
breakwater is finally expressed as 

/D = aot&nC   —•<  (41) 
crcg y ftj y $s - •dr 

where tan ( is the equivalent bottom slope at the breaking point which is defined as a 
mean slope in the distance 5(h[)b offshoreward from the breaking point, and 

# = (\fi\/ti1),    <9, = 0.4(0.57 + 5.3tanC),    tfr = 0.4(|»)|//ii)b (42), (43), (44) 
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Fig.3 Breaking wave condition on submerged permeable breakwater. 
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Fig.4 Comparison of breaking wave condition. 

(3) Breaking criterion 

Wave breaking is usually detected from the condition which is determined by break- 
ing indices. The information of wave breaking on a submerged permeable breakwater 
is scarce. Therefore, the wave breaking phenomena were preliminary investigated 

through a series of laboratory experiments. 

The model experiments of submerged permeable breakwater were conducted with 
two sizes of gravel on a uniformly sloping bed and a horizontal bottom. The porosity 

of gravel were 0.39 and 0.44, respectively. On the basis of the experimental results, 
an empirical formula for the condition of wave breaking on a submerged permeable 

breakwater is proposed. 

Hh/L0 = 0.127tanh{fc0(/»i)b} (45) 

where E\, is the wave height at the breaking point, L0 the deep water wavelength, 
k0 = 2TT/L0 the deep water wave number, and (fti)b the depth of breakwater surface 
at the breaking point. The agreement of Eq.(45) with the experimental results is shown 
in Fig.3. The breaking wave condition in Eq.(45) has a similar form as that presented 

by Miche (1951). 

Hh/Lh = 0.142tanh{fcb(Ai)b} (46) 
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in which ib is the wavelength at the breaking point, and kh = 2ir/Lh the breaking wave 
number. Equation (45) is plotted in comparison with Eq.(46) in Fig.4. It is shown 
that both equations give almost the same results for breaking wave height. However, 
the definition of the breaking wavelength and wave number for a submerged permeable 
breakwater is implicit. For the sake of the present application, Eq.(45) will be adopted 
as an index to detect the wave breaking. 

2.3 Numerical Computation 

A method of numerical computation is utilized for the computation of wave trans- 
formation in general breakwater configurations. A detailed description is also given 
in Rojanakamthom et a,]. (1989). The governing equation is discretized by using a 
finite difference scheme. In this paper, a two-dimensional problem as in the wave-flume 
experiments is analyzed to examine the validity of the present model. Then, Eq.(26) 
reduces to 

h (a£)+{k2a ~iaafo)"=° (47) 

The study area is divided into grids in the x-direction and a finite difference form 
of Eq.(47) is formulated. The computation is performed with the following boundary 
conditions. At the offshore boundary, an open boundary condition is imposed in which 
the water surface displacement is composed of incident and reflected wave components. 
Under the assumption of linear superposition, the complex amplitude of the water 
surface displacement is expressed as 

J) = a;exp( — ikgx) + ar exp(ik0x) (48) 

where a; and ar represent the amplitudes of incident and reflected waves, respectively, 
and fco the complex wave number at the offshore boundary. 

At the shoreline boundary, a non-reflective condition is imposed by considering 
that the wave energy is dissipated due to breaking on the shore. Therefore, the water 
surface displacement is the resultant of the transmitted waves. 

17 = otexp(-jfcshs) (49) 

where ot is the amplitude of transmitted waves, and ks^ the wave number in the 
shoreline region. 

The solutions are obtained through an iteration. An initial value of the friction 
factor /p is first assumed with zero energy dissipation due to wave breaking, /D = 0. 
With a given incident wave condition, the complex wave number k at every grid is 
calculated from Eq.(8) via an iteration technique. The coefficient or is next evaluated 
from Eqs.(20) to (25) and then coefficients of the amplitudes i) at every grid are de- 
termined. This results in a set of linear equations which can be solved by using the 
method of Gauss elimination. Wave breaking on the breakwater is then examined by 
Eq.(45) and the energy dissipation due to wave breaking is included from Eqs.(41) to 
(44). The calculation is iterated until the convergent results are obtained. The friction 
factor /p is next evaluated from Eq.(3). The computed value of /p is compared with 
the assumed one and the computation is iterated when required. 
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Fig.5 Definition sketch; waves propagating over a rectangular submerged breakwater. 

For irregular waves, a technique of individual wave analysis is utilized. The ad- 
vantage of this technique has been clarified in the analysis of wave breaking. In the 
computation, individual waves are defined from an irregular wave train through zero- 
downcrossing method and the transformation of each wave component is calculated. 

2.4 Rectangular Submerged Breakwater 

The validity of the mild-slope equation is examined by comparing with an analyti- 
cal solution for a rectangular submerged permeable breakwater. A breakwater of finite 
width B is considered as shown in Fig.5. A monochromatic incident wave encounters 
the breakwater face at x = 0. Then, some part of the wave energy is reflected while 
the other part is transmitted through the breakwater. The flow field is seperated into 
three regions. The solution in each region is shown in terms of unknown amplitudes 
as follows. 

Region I (x < 0) 

<h  = {a; exp(-ikx) + ar exp(ikx)} , ,, ,   . exp(iat) 
cosh(kho) 

A              ,.        cos{km(z + h0)}       .. 
+ 2v atmexp(kmx)   exp(icrt) (50) 

Region II (0 < x < B) 

OO 

<f>u = ^2[alnexTp(-iknx) + a2„exp{ikn{x - B)}]Gn(z)exp(icrt)(-hi < z < 0)(51) 
n=0 

oo 
0SH = ^[oi„exp(-iA;ni) + a2nexp{ikn(x - B)}]Hn(z) cxp(iat)(-h0 < z < -/n)(52) 

Region III (x > B) 

i r    -i/        „,, cosh{k(z + h0)}       ,.   .. 
im   =   atexp{-ik(x - B)\   exp(iai) 

cosn^fc/zg J 

+ 2^ atmexp{-km(x - B)}       '       .       exp(iat) 
•-i cos(Kmn0) 

(53) 
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In the above equations, alm and otm represent the amplitudes of evanescent modes 
of reflected and transmitted waves, a\n and a2„ the amplitudes of progressive and 
evanescent modes of the transmitted waves through the front face and reflected waves 
from the rear face of the breakwater, and 

6sinh(fc„/tp)exp{fcn(z + hi)} - <S„cosh{fcn(z + hi)} .    . 
esinh(fc„/ip)exp(fcn/ii) - <5ncosh(fcn/ii) 

Hn{z) 
cosh{fcn(z + h0)} 

in which 

esinh(fcnfop)exp(fcn/ii) — <5ncosh(fcn/ii) 

: esinh(/fc„/«p) - (Cr - »/p)cosh(fc„hp) 

(55) 

(56) 

The wave number k is determined from Eq.(10) while km and fc„ can be determined 
from Eqs.(57) and (58). 

u2 = -gfcmtan(fcmfto) (57) 

2 _        cexp(fcn/ii)sinh(fc„/ip) - 8ns\n\\(knhi) 
eexp(fc„/ii)sinh(A;n/ip) — 6n cosh(knhi) 

(58) 

In Eqs.(50) to (53), unknown parameters are ar, orm, at, atm, ain and a2n. These 
unknowns are solved with the boundary conditions, namely the continuity of pressure 
and mass flux at the interfaces. The orthogonality of the eigenfunctions is utilized. 
After mathematical manipulations, the amplitudes a\n and a2n can be solved from the 
following equations. 

n=0 
°1" 1   I * + ~7T 1 ^10" +  I Cr ~ J

/P + e~l7 1 ^20n 

+ a2n exp(-iknB) {(l-y   A10ll + I Cr - ifp - e— ] A20n 

2a; ho     smh(2kho) 
cosh(kh0) 1 ~2~ Ik 

(59) 

£ IfC-ii 
ain) I J + T- 1 ^3m" + I Cr - t/p + e-r11 I ^m» 

+    a2„exp(-ifc„B){ ( 1 - ^ | A3mn 

+      I Cr- t/p -e-jp )A4nm = 0     (m = l,2,3--) (60) 

ainexV(-iknB)l fl - y j A10n + (ct - ifp - e^ ) A20re j E 
n=0 

+ a2n< ( 1 + ~ J A10„ + Jcr - i/p + 6^- ] A20„ = 0 (61) 
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£ L» exp(-iknB) j h - ^ j A3mn + (Cr - • /„ - e^2.) A4mn 

ifcn 
+   a2n{[l + -^   A3m„ +    Cr-«7p + e-^   A 

2/ujl 
0   (m= 1,2,3 • -)(62) 

where 

f° f-hi 
Aio» =  /      Gn(«)cosh{fc(« + /8o)}^> hon=           Hn(z) cosh{k(z + h0)}dz   (63) 

./ — Ai /—/&o 

/•0 ,-k, 

A3mn =  /      Gn(^)cos{A;m(^ + /jo)}rf2:, A4mn =  /       #„(.&) cos{A;TO(2 + /»o)}rfz (64) 
J—hi J—ha 

The amplitudes of reflected and transmitted waves ar and at are then calculated 
from Eqs.(65) and (66). 

sh(kho) 
fen    ,   sinh(2fe/ip) 1   ^^ 
2   + 4fc J n=0 

ll»^  I "* T2" ) ^10n +  ( Gr - i/p - e-^- ) A20n 

Ot 

+o2n exp(-<AB5)| M + ^ J A10n + (cx - ifp + e^-) X20n 

1 

(65) 

cosh 

i        f ho _,_ sinhfi^rr E^i" exp(-ii„B) + a2n}{A10n + (Cr - .yp)A20n} 
T*So7 1 2   + 4* j* n=0 

(66) 

The reflection and transmission coefficients, KT and i('t, are by definition equal to 
the absolute value of ratio of the complex wave amplitudes. 

KT = |ar/o;| ,      Kt = |ot/o;| (67) 

Equations (59) to (67) are the strict analytical solution for a simple rectangular sub- 
merged permeable breakwater. 

Wave Gauge Submerged 

Breakwater 

Wave 
Absorber 

1.0 

11.0 2.0 10.0 

Unit:meter 

Fig.6 Model experiment of submerged breakwater. 



WAVE TRANSFORMATION MODELING 1071 

III.    VERIFICATION OF THE WAVE MODEL 

The validity of the present model is examined by comparing the results from the 
numerical computation with experimental data obtained in a laboratory experiment 
and a strict solution for a rectangular submerged breakwater. 

The experiments on the wave transformation over a submerged permeable break- 
water were carried out in a laboratory wave flume as shown in Fig.6. The model 
breakwater composed of gravel with average diameter of 2.5 cm was placed on a 1/20 
uniformly sloping bed. The offshore slope of the breakwater was 1/3. Tests were 
conducted for various wave conditions of regular and irregular waves with different 
values of the breakwater crown width. The water surface displacement was measured 
along the center line of the test section from offshore to onshore region. Sample of 
the experimental data for the distributions of root mean square value of water surface 
fluctuation are presented in Fig.7. In the figures, Hi and T represent the incident wave 
height and period for regular waves while H1i3 and T]/3 represent the significant wave 
height and period for irregular waves. The symbols Xt and Xc indicate the locations of 
the toe and crown of the breakwater, and Xsh the location of the shoreline. It is found 
that the wave amplitude considerably decreases over the breakwater which indicates a 
significant loss of the wave energy. 

"'! —i - 1 1 -1 

  CALCULATION 

 r 

»i « 
T 1 

5 50 

T  

cm 

•  EXPERIMENT T - 1 82 s 

• D| - 4 SO cm 

D„ - 35 50 cm 

B • 10. oo cm 

_ 

xtxc 
 1 U. IU 1 L  L. 

Xsh 

-CALCULATION    Hj - S. 70 

EXPERIMENT     T " 1- 7 0 
D, - 6. 00 

Doo - 3 7. 00 

B - 325. 00 

4 5 6 
X(m) 

 1 1 1 1 r 

  CALCULATION «»/• - 
T 1 

5 

 1  

5 9 cin 

•  EXPERIMENT Tl/. - 
Di  - 

1. 

4 

45 a 

5 0 cm 

" A» - 36 50 cm 

B lO. 0 0 cm 

xtxc 
1  it ft 1  1  1 

iXah 

if « 

 —1 1 1"1  1 1 

  CALCULATION 

—r- 

H'„. _ 
I"'      1"' 

6. 03 cin 

• EXPERIMENT T./. - X.  S4 s 

*>! - 6. OO cm 

" Dm - 37. 00 cm 

B " 325. 00 cm 

\ - 

X,  Xo^9* A Xsh 
 i ii_.i_i i_ i tl T . ' O I 1        II   n I 1        I        I        II •        »        I o 

0123456789     10 0123456789     10 

X (m) X (m) 

Fig.7 Distribution of root mean square value of water surface fluctuation. 
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The mathematical model based on the present mild-slope equation is applied to the 
computation of wave transformation over a submerged breakwater. Some important 
parameters are evaluated from given properties of the model breakwater; the poros- 
ity is 0.39. Values of the permeability Kp and turbulent friction coefficient Cf are 
interpolated from the results of laboratory tests under steady flow conditions which 
were presented by Sollitt and Cross (1972). In the present computation, the values 
of Kp = 3.77 • lO-7 m2 and Cf = 0.332 are adopted. The inertia coefficient Cr is 
approximately regarded as unity after Sollitt and Cross (1972). The computation is 
performed by the iteration procedure. Results of the numerical computation are also 
shown in Fig.7 in comparison with the experimental data. The agreement between 
the model computation and experiment is generally good although the computation 
gives a transmitted wave component slightly smaller than the measured one. The 
computation also shows a slight overestimation of reflected wave due to the energy 
dissipation. 

The present model is applied to a rectangular submerged breakwater and the reflec- 
tion and transmission coefficients are compared with the strict solutions. A breakwater 
of width B = 3 m with the same physical properties as mentioned is considered. The 
amplitudes of reflected and transmitted waves are obtained from the potential in the 
offshore and onshore region of the breakwater. Then, the reflection and transmission 
coefficients are calculated. The computation was performed for various conditions. 
Sample results of the comparison are shown in Fig.8 as a function of relative water 
depth, h0/L0. The agreement is fairly good in spite of the assumption of mild slope 
used in the derivation. 
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Fig.8 Reflection and transmission coefficients of rectangular submerged breakwater. 
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IV.    CONCLUDING REMARKS 

A mathematical model for the computation of wave transformation over a sub- 
merged permeable breakwater has been proposed on the basis of newly-derived mild- 
slope equation. The model equation is simple and helpful in understanding the physical 
behavior of the phenomenon. Its application was described by means of a numerical 
computation and the validity of the model was confirmed through comparisons with 
the experimental data and with a strict solution for a rectangular submerged break- 
water. The present model is applicable for a wide range of breakwater configurations. 

However, the extension of the present model for a three-dimensional problem is es- 
sential to make the model more practical and useful for the prediction of wave field 
around the submerged breakwater. 
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