
CHAPTER 73 

SCALE EFFECTS IN BREAKING WAVES 

Toumazisl, A.D. and Anastasiou^, K. 

Abstract 

A breaking wave model, which is partly physical and partly analytical, is 
proposed. This model is based on observations that up to a certain moment the 
wave presents a long, smooth, horizontal, cylindrical edge, which then segments 
due to surface tension effects. A disturbance on a cylindrical surface, withdrawn 
from the influence of gravity, becomes unstable when its wavelength exceeds 
the circumference of the cylinder. The rate of growth of the instability, is a 
function of the radius of the cylinder and the wavelength of the disturbance. 
Using the theory describing the evolution of the assumed hyperbolic shape of 
the tip of a breaking wave, the radius of the cylindrical edge is approximated 
to the radius of curvature of the hyperbola. The model describes the 
three-dimensional evolution of the curling wave crest. Scale effects are then 
derived which show good agreement with experimental results. 

Introduction 

During the overturning process of a breaking wave, the plunging jet is in 
a state of free fall. Assuming that the wave is two-dimensional, with no 
transverse inertial forces, and air friction is negligible, surface tension is the 
predominant force acting on the fluid particles. 

Under similar ambient conditions, the behaviour of the overturning face of 
the breaking wave is the same to that of a liquid cylinder. If a liquid cylinder 
is constructed and liquid is drawn out gradually, the diameter of the cylinder 
decreases until the length of the cylinder becomes just about three times as 
great as its diameter. Soon afterwards instability begins, and the cylinder alters 
its form; it narrows at the waist, so passing into an unduloid and the 
deformation progresses quickly until the cylinder breaks in two, and its halves 
become portions of spheres. This behaviour is due to surface tension effects. 
Plateau (1863) established experimentally that the distance between the spheres 
is proportional to the diameter of the cylinder. In the case of a very long 
cylinder,    when   many   spheres   are   formed,    the   parts   between   consecutive 
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dilations   or   constrictions   undergo   identically   and   simultaneously   the   same 
modifications as described above (fig. 1). 

mm 

Fig. 1 Stages of the segmentation of a liquid cylinder 

Plateau (1863) also noted that the phenomenon of the formation of lines 
and their resolution into spherules is not confined to the case of the rupture of 
the equilibrium of liquid cylinders; it is always manifested when one of the 
liquid masses, whatever may be its figure, is divided into partial masses. The 
phenomenon is also produced when liquids are submitted to the free action of 
gravity. 

Worthington (1908) discussed the effect of surface tension on breaking 
waves. He observed that a wave that has just impetus enough to curl over and 
break, up to a certain moment it presents a long, smooth, horizontal, 
cylindrical edge, from which, at a given instant, are shot out a large array of 
little jets which speedily break into foam, and at the same moment the back 
of the wave, hitherto smooth, is seen to be furrowed and combed (fig. 2). He 
proposed that these jets are due to the segmentation of the cylindrical rim 
according to Plateau's law, and the ridges between the furrows mark the lines 
of easier flow determined by the jets. Further observations of this phenomenon 
were made by Toumazis (1989) from video and photographic records. 

Fig. 2 Diagrams of a breaking wave (Worthington 1908) 

Regarding scale effects in breaking waves,  Fuhrboter (1986) studied impact 
loading   by   breaking   waves   on  slopes   and   found   that   scale   effects   do   exist. 
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Skladnev and Popov (1969) measured impact pressures induced by waves 
breaking on a slope in a more systematic way. Waves of the same steepness 
but of wave height ranging between 3 and 120 cm were tested. Prototype 
conditions were considered the ones with the 120 cm wave height. The results 
were presented in graphical form (fig. 3). The abscissa is the ratio of the 
model to the prototype (120cm) wave heights and the ordinate is the ratio of 
the model to the prototype impact pressure factor Kpi defined as the ratio of 
the measured pressure to the static pressure pgh, where h is the wave height. 
From these results it is evident that, it is not permissible to use Froude criteria 
to scale up experimental results on breaking waves with model breaker height 
less than about 0.5m. 
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Fig. 3 Effects of wave height on the relative wave pressure value 
in the wave impact zone. (Skladnev and Popov, 1969) 

Stive (1984) reached the same conclusion, stating that in order to avoid 
disturbing influence of the surface tension on the amount of air absorption in 
the broken wave, the incident wave height in the model must exceed 
approximately 0.5m. 

The primary objective of this work is to formulate a model for the effects 
of surface tension on breaking waves and to establish a quantitative threshold 
beyond which scale effects are negligible. It will be shown that this threshold 
agrees well with available experimentally derived indicators. 

Surface Tension Effects on Free Falling Liquid Cylinders 

Any small disturbance on a liquid cylinder may be considered, according to 
Fourier's theorem, as the summation of a series of sinusoidal wave disturbances. 
The surface area of the cylinder will change whereas the  volume of the liquid 
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remains the same. As surface tension results in contracting the volume to the 
minimum possible surface area, an increase of the surface area due to the 
disturbance will be opposed by surface tension, whereas a contraction of the 
surface will be enhanced. The criterion for stability is therefore the change of 
surface area for a given volume after the appearance of a small disturbance. In 
the following derivations the effects of only one sinusoidal disturbance will be 
considered, bearing in mind that the principle of linear superposition must be 
applied when a full range of Fourier componets must be taken into account. 

If a cylinder with radius r is slightly deformed so that 

y - r + a cos —=- x (1) 

where x is measured parallel to the axis, y is the distance normal to the axis, 
a is the amplitude of the deformation, and L is the wavelength of the 
deformation. Plateau (1863) showed that the cylinder is stable if 

L< 2 » r (2) 

The  theory is  hereby  extended  to  consider  a  sector  of  a  liquid  cylinder 
with a slight sinusoidal deformation 

y «- r + a cos(kx)       ,   where k=2ir/L (3) 

The mean surface area between two consecutive crests, a, is then 

o- - r  0  + i r  $  a2  k2 (4) 

where 6 is the angle between the radii of the sector. Assuming the volume of 
water in the cylindrical sector remains the same, the mean volume S is 

S = I e  r2 + i e a2 (5) 2 4 

Combining the two expressions for a and S, 

a - /TT"S + J £2( k2 r2  - 1  ) (6) 

The surface area of the undisturbed liquid (a=0) is, 

an -  / 2  6  S (7) 'o 

Therefore, the change in the surface area is 

9  a2 

4  r (  k2  r2  -  1) (8) 

If k.r  > 1  the surface area increases and hence the liquid is stable, while 
if k.r  <  1  the surface area decreases and instability results. 
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The   obtained   result   is   independent   of  the angle   6.   The   cylinder   is   a 
special  case  of  the  considered  case,   with   0=2%. Plateau  (1864)  and  Rayleigh 
(1878)   reached   the   same   result   by   considering the   cylindrical   shape   as   the 
initial condition. 

The mode of falling away from unstable equilibrium necessarily depends on 
the small deformations to which the system is subjected. In an ideal situation 
of no deformations, even if L>2HT the cylinder would still be in equilibrium. 
In practice however, some kinds of disturbances are always present. Although 
all disturbances corresponding to L>2irr are unstable, the rate of change of the 
shape due to each wavelength, L is different. 

Assuming that the amplitude of the disturbance, a, once unstable, grows 
exponentially with time, that is 

a - a0  eq» (9) 

where   a0   is   the   initial   amplitude,   Lord   Rayleigh   (1878)   showed   that   for   a 
cylindrical surface, 

_T     r ..,       9  ...   .     7       ...       25    ...   .       91 
x2  "Ix4 + 2^Ix6  " 2T*x8 +2TT7!T5 X"  J (10) 

where x=kr=2irr/L. For given r, all disturbances with wavelength, L, less than 
2mf (2irr/L>l) are stable. For L greater than 2irr the disturbances grow with 
time, the fastest growing one having L«9r. 

Gravity and Inertial Effects 

The mathematical description of the free surface area of a 
two-dimensional overturning wave, as governed by inertial and gravitational 
forces, was presented by Longuet-Higgins (1980). A frame of reference was 
used in which the x-axis is longitudinal horizontal, in the same direction as the 
propagation of the wave, the y-axis is transverse horizontal and the z-axis is 
vertical. The saddle-point, the point where the pressure gradient vanishes, 
follows a free fall trajectory. Its motion therefore satisfies 

x - x,   + U  (t-t,) (11) 

and z - z,   -  1/2  g  (t-t,)2 (12) 

where x,, z,, t, and U define the initial coordinates, time and horizontal 
velocity respectively. The tip of the wave is approximated by the hyperbola 

x2      z2 

Taking y to represent the angle between the asymptotes, S the angle of 
rotation of the principal axes, and r the radius of curvature at the tip of the 
breaker (fig. 4), 
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tan I - | (14) 

r-     |-£2| (15) I  a  I 

Fig. 4 Hyperbola approximating the tip of the wave. 

Given the initial conditions, the two-dimensional evolution of the crest of 
the wave as depicted in Fig. 5 may be completely described, as shown by 
Longuet-Higgins (1980). It should be noted that in this reference there is a 
misprint in equation 5.8; the term f2 should be included in the numerator of 
the right hand side. 

The Proposed Model for the Breaker 

Worthinghton's proposition (1908) is adopted as the fundamental 
assumption on which the presented model is based. That is, the crest of the 
overturning wave presents a long, smooth, horizontal, cylindrical edge. 

The horizontal cylindrical edge, in the state of free fall, is modified in a 
manner governed by surface tension principles. The radius of the cylindrical 
edge is assumed to be independent of surface tension effects and only governed 
by inertial and gravitational forces. The formulations derived by 
Longuet-Higgins (1980) are therefore applicable to this problem. The radius of 
the cylindrical edge (Worthinghton, 1908) is equated to the radius of curvature 
of the hyperbolic edge of the wave (Longuet-Higgins, 1980). The proposed 
model is therefore a combination of two distinct analytical descriptions. The 
problem is studied by considering the evolution of monochromatic sinusoidal 
disturbances on the tip of an overturning wave. 

Consider a small sinusoidal disturbance of amplitude a0, and wavelength L, 
on a liquid cylindrical edge. Surface tension considerations suggest that the 
amplitude of the disturbance will start growing when the wavelength, L, exceeds 
27rr, with an exponential rate of growth, at=a0 exp(qt) (equation 9). The value 
of q is obtained from equation 10. For a cylindrical edge with a continuously 
varying radius, r, it is more appropriate to rearrange equation 9 so that, 

at+«t  = at   exp(q  St) ' (16) 
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Given the initial conditions of the overturning wave, that is the conditions 
at breaking point, the evolution of the breaker shape is computed. For any 
time t, the values of the variables a and y as defined by Longuet-Higgins 
(1980) are thus obtained. These values together with the coordinates of the 
point of intersection of the axes of the hyperbola, which are determined from 
equations 11 and 12 describe completely the evolution of the tip of the breaker 
in the two-dimensional plane of the wave. The radius of curvature of the tip 
of the breaker is equal to 

r0  tar.3/2(7/2) (17) 

Assuming that the rate of increase of the amplitude of a disturbance on 
the tip of the breaker is the same as that for a cylinder, as derived by 
Rayleigh (1878), the amplitude of a disturbance of wavelength L is then 
obtained using equations 16 and 10. 

Figure 5 shows the time dependent characteristics of six distinct sinusoids 
with the same initial amplitude. It is clear that, as the radius of curvature of 
the curling wave crest decreases with time, the long disturbances start growing 
first. The rate of growth of the amplitude decreases with increasing wavelength 
of the disturbance (eqn. 10). A long wavelength starts growing early and 
slowly, whereas a short wavelength starts growing late and rapidly. There is 
consequently a particular wavelength which attains the maximum amplitude at 
the instant of hitting the water surface. This predominant wavelength is 
therefore a function of the type and size of the breaker (initial radius of 
curvature, breaker height and horizontal velocity) and the form of the initial 
disturbance. 

Short wavelengths are in general associated with small breaker heights and 
small radii of curvature at the tip of the breaker. The duration of overturning 
is short. Sinusoidal disturbances of long wavelengths although unstable, grow 
very slowly and the short duration of overturning does not allow them to 
become dominant. The smaller the breaker, the shorter the predominant 
wavelength. 

On the other hand, big breakers have large radii of curvature even at 
plunging point. Disturbances of short wavelengths do not become unstable. As a 
result, the bigger the breaker, the longer the predominant disturbance. 

Derivation of Scale Effects from the Proposed Model 

As it has already been noted, in breaking waves apart from the 
gravitational and inertial effects, surface tension also plays a significant role. In 
scaling surface tension effects the ratio of the inertial to the surface tension 
forces must be the same. The Weber number 

We = u /(lp/T) (18) 

must be the same in both prototype and model conditions, where p and T are 
the density and surface tension of the fluid, u and 1 are velocity and length 
scales respectively. 
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Fig. 5 Evolution of six sinusoids, of different wavelength, 
on the tip of an overturning wave. 
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It is evident that the Froude and Weber criteria cannot be satisfied 
simultaneously. In model tests involving breaking waves, Froude scaling is 
usually the adopted criterion, as it models satisfactorily the overall conditions, 
although the details of the breaking process are not fully modelled. It is of 
vital importance, in the interpretation of the model test results, to know how 
the non-scaling of surface tension effects affects the prototype conditions. 

The developed physical/computational model, which takes into consideration 
both gravitational and surface tension effects, is now used to quantify scale 
effects in breaking waves. Consider a wave breaking in shallow water (fig. 6), 
which has the following characteristics 

and 
Lb - T ygh" 
Hb ~ h 

(19) 
(20) 

where ~ means order of, Lb is the wavelength of the breaking wave, T is the 
wave period, h is the water depth at breaking point, and Hb ;s tjje breaker 

height. 

 77^  
Fig. 6 Breaking wave in shallow water depth. 

In order to determine the angle 7 when the forward face of the wave 
becomes vertical, the assumption is made that the backward face of the wave is 
straight such that, 

*"v~%-T-X>-* 
The initial conditions are therefore 

Hb 
(21) 

To 
6 
r 

tan"'   (  T/g/Hb  ) 

0       1-4 Hb 

0 ~  1/2 7o 

(22) 
(23) 
(24) 

The  duration  of overturning  is  equal  to  the  time  required for  a  free  fall 
from height Hb 

/ 2Hb/g (25) 

For a given breaking wave height, Hb, and wave period, T, the evolution 
of a transverse sinusoidal disturbance on the wave crest, with wavelength L, 
and amplitude a0, is traced up to plunging point. The ratio of the amplitude 
of the disturbance at plunging point, ap, to the initial amplitude, a0, i.e. 
ap/a0, is a measure of the surface tension effect on the wave breaking process 
for the assumed wavelength of initial disturbance. 
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When the above procedure is followed for a range of wavelengths of 
disturbance, the maximum value of ap/a0, corresponding to the predominant 
wavelength of disturbance, is deduced. Any given breaker is therefore associated 
with a predominant wavelength of disturbance, whose amplitude at plunging 
point is amplified by the factor ap/a0. 

Figure 7 presents the computed values of the ratio ap/a0 for a wide range 
of wave conditions. The variation of this ratio reflects the effects of scaling. A 
constant value for ap/a0 implies that the shape of the breaker does not change 
between large and small waves. 

«       2 

•   •   • •   ••••• 

1.0 2.0 2.5 

Breaker   height,    H 

Fig. 7 Model results showing the relative growth of predominant 
disturbance as a function of breaker height. 

It is evident from this plot that, surface tension effects are the same for 
breaking waves bigger than about 0.5m in height, whilst they become 
increasingly important for smaller waves. This observation suggests that, 
assuming the curling face of the wave retains a hyperbolic shape, big waves, 
which have small curvatures, do not feel the surface tension forces. This is in 
agreement with the broad characteristics of surface tension; surface tension is a 
molecular effect which becomes important for high curvatures. 

The presented model is in agreement with the experimental results of 
Skladnev and Popov (1969) and Stive (1984), who both found that scale effects 
do exist for breaking waves smaller than 0.5m high. The results from the 
present model and the available experimental observations, however, appear to 
disagree with regard to the following point. The present model predicts no 
segmentation of the tip of the wave for big waves, whilst the experimental 
results suggest that big waves are highly aerated and spayed, whilst in small 
waves   aeration   is   negligible   or   does   not   occur   at   all   (Skladnev   and   Popov, 
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1969). This apparent contradiction may be justified by considering the 0.5m 
cut-off point as the point at which the physical process of wave overturning 
changes. For breaker heights up to 0.5m, the global surface tension effects are 
more significant than the microscopic ones. For bigger waves, as the results 
from the proposed model suggest, the global surface tension effects are 
negligible. 

The radius of curvature of an assumed irregularity on the tip of the wave 
is very small compared to that of the tip of the breaker. When unstable, the 
short wavelength disturbances grow much faster than the longer ones. These 
properties imply that, the short sinusoidal transverse disturbances, which are 
stable from the macroscopic point of view, are now unstable and fast growing. 
They thus prevail on the tip of the wave. The described process is illustrated 
in figure 8. The evolution of the same monochromatic disturbance is presented, 
as predicted from the numerical model, for four different radii of curvature. 
The fast growth of the disturbance associated with the small radii of curvature 
is evident. Irregularities on the tip of the breaker, therefore tend to produce 
closely spaced jets. These jets are easily observed on the curling crest of two- 
dimensional overturning waves, breaking in both deep and shallow water 
conditions. 

WW 
Fig. 8 Evolution of a transverse disturbance (L=40mm), on 4 waves 

of different curvatures: r0= a) 14mm, b) 12mm, c) 10mm, d) 8mm. 
Time interval = 0.02 seconds. 
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Critical Assessment of the Proposed Model 

The accuracy of any model depends on the validity of the assumptions 
inherent in the modelling. In the proposed model two distinct theories are 
used, the first one dealing with the segmentation due to surface tension effects, 
and the second with the stretching of the tip of the plunging jet, due to 
gravity and inertia effects. 

The formulations on surface tension used in the proposed model are based 
on linear theory. Non-linear solutions have been developed since the original 
formulations by Plateau and Rayleigh. Bogy (1979) presented a literature review 
on the problem of the segmentation of liquid jets. Recent theories take into 
account finite amplitude disturbances, non-linear interactions, viscosity and air 
friction. The approximations inherent in the proposed model are such that the 
use of linear theory in describing surface tension effects is quite reasonable. 

Regarding the formulations derived by Longuet-Higgins (1980) on the 
change of form of the tip of the curling wave, no experimental work has been 
done to test the theory. The reason for the absence of such a work becomes 
apparent when one looks at photographs showing the overturning process. The 
curling face loses its continuity, as it spreads into jets and the free surface 
boundary is no longer two-dimensional, making the description of the cross 
sectional profile a most difficult task. The theory and assumptions however, on 
which the derivations are based are reasonable and, overall, the results are 
broadly in agreement with observations. 

The assumptions inherent in the proposed model introduce their own 
limitations. Firstly, it is assumed that the tip of the overturning wave behaves 
like a horizontal liquid cylinder. The surface tension formulations for liquid 
cylinders are based on the assumption that there is no flow across the surface 
of the cylinder, a condition which is not necessarily valid in a breaking wave. 
The effect of this assumption is that the model is strictly applicable to the very 
tip of the wave crest. 

The ridges formed at the back of the wave are not treated by the 
proposed model. Their formation may be explained by the physics on which 
the model is built. The back of the wave has its own radius of curvature and 
any transverse disturbance on its surface will grow or diminish according to 
surface tension principles. The segmentation of the tip of the wave spreads in 
the vicinity of the crest. The long wavelengths of the enhanced transverse 
disturbances are further amplified, as the radius of curvature at the back of the 
wave is longer than at the tip. These disturbances appear as ridges, or 
channels of easier flow according to Worthington's (1908) terminology, spaced 
at wider intervals as their distance from the tip of the breaker becomes 
greater. 

A further assumption built in the model is that the two theories used, 
namely surface tension and gravity, do not affect each other. That is, the 
radius of the cylinder is not modified by the growth of the disturbance. This 
assumption affects mostly the short disturbances which rapidly form thin jets, in 
which case the horizontal cylinder loses its physical meaning. 
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Conclusions 

Surface tension has been shown to play an important role in the 
overturning stage of a breaking wave. During this stage, any unstable 
disturbances on the tip of the breaker will grow as the curling face follows a 
free fall trajectory. The effects of the two main forces, namely gravity and 
surface tension have been combined together to produce an analytical/ 
numerical model that describes the evolution of the overturning face of a 
breaking wave. 

The initial conditions of the overturning face were related to the breaker 
height and period, after making certain approximations. The most important 
result derived from the model is that breaking characteristics are independent of 
surface tension effects, for breakers larger than 0.5m high, a result which is in 
agreement with earlier experimental results. 
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