
CHAPTER 70 

BREAKING AND REFLECTION OF A STEEP SOLITARY WAVE CAUSED 
BY A SUBMERGED OBSTACLE 

Takashi Yasuda' .Masanori Hara-• 

ABSTRACT 

A fully nonlinear potential flow theory is solved 
numerically but almost exactiy for a soritary wave 
passing over a submerged obstacle by using BIM. Based 
on the numerical solutions, the refrection 
characteristics and the breaker type and criterion are 
made clear for a solitary wave up to breaking caused by 
a step. 

1. INTRODUCTION 

A sound knowledge on the transformation including 
the breaking of steep coastal waves over a submerged 
obstacle is important for planning and designing 
submerged coastal structures. However,few knowledge is 
obtained on the breaking caused by a submerged obstacle 
including a discontinuity in depth. 

It has often been remarked that waves on beaches 
resemble solitary waves. In fact, steep coastal waves 
are demonstrated to be represent able as a random train 
of solitons(Tsuchiya & Yasuda, 1986). Hence, it may be 
better to consider each wave crest as a solitary wave 
and investigate its transformation, rather than to 
examine directly that of steep coastal waves. 

A computational model to be used here is based on 
BIM and has already developed by authors (1989).It can 
describe almost exactly the transformation up to 
overturning of the solitary wave propagating over a bed 
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containing a submerged obstacle. 
This study aims to make clear the breaker criterion 

and reflection characteristics of steep solitary waves 
passing over a step by using the computational 
model(Yasuda et al . , 1989) which can describe almost 
exactly the transformation up to overturning of the 
solitary wave. 

2. COMPUTATIONAL MODEL 

In this study, the solitary wave given by the exact 
steady solution of fully nonlinear potential-flow 
theory is supposed over the planar of left side from 
the obstacle, and the still water is supposed over the 
obstacle and its right side planar in a two-dimensional 
domain. Further, the Cauchy integral theorem is 
introduced to solve Laplace's equation under the 
condition on the rigid boundary. The updating of the 
free surface profile and the velocity potential is 
based on the second-order Taylor expansion in a mixed 
Eulerian-Lagrangian formulation as well as Dold & 
Peregrine(1986). 

3. VALIDITY OF THE MODEL 

The first check of the time stepping accuracy is 
provided by examining the growth of the error energy 
defined by 

i r°° E(t) = 2j      [fl(',t)-Y(x-d)]3dxt (1) 

where Y is the surface displacement of the steady 
solitary wave mentioned above, c its propagation speed 
and n the water surface profile given by the present 
numerical solution. A test is made on the solitary wave 
in still water up to the dimensionless time t/fJE=\2. 
Here, h is the undisturbed water depth and g the 
acceleration of gravity. While the wave has propagated 
on the distance of 15h, E(t) remains less than 3xl0--; 

in value. (Note, for comparison, that for the wave 
under consideration (l/2)jY<-dx = 0.42.) 

The second check is provided by examining the 
validity of the model against carefully controlled 

experiments in a wave tank(lmxlmx54m) . The desired 
steep solitary wave is generated by using a servo- 
controlled,  hydraulically activated wave maker.  The 
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free surface displacement is measured with the 
capacitance-type wave gauges installed at three 
locations, P.l, P.2 and P.3 which are placed at the 
front of the obstacle, just behind of it and at the 
breaking point of the transmitted solitary wave, 
respectively. The breaking point is defined as the 
onset of the formation of a jet or bubble plume. The 
location of P.3(breaking point) is decided for each 
incident solitary wave by using a high speed video 
camera and observing the presence of the jet or bubble 
plume. 

Figure 1 shows an example of the computed shape of 
the free surface at some evolution times. The initial 
wave-height H/h of the incident solitary wave is 0.4, 
and the relative height R/h and length B/h of the 
submerged breakwater model are 4/7 and 24/7, 
respectively. It is found that while the transmitted 
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solitary wave makes its front face overturn at the 
location of P.3, the reflected wave propagates backward 
as a small but noticeable solitary wave. 

Figure 2 describes the temporal changes of the 
crest-height ??c/h and the horizontal water particle 
velocity U0//gn" and the gradient angle of the front 
face e at the top of the solitary wave shown in Fig.l. 
It is found that the gradient angle e reaches -90 
degrees and the front face becomes vertical at the 
onset when the top of the wave passes through the 
location of P.3 where the formation of a jet was 
observed in the experiment. Hence, the onset of 
overturning can be defined as the breaking point in the 
computational model. 

Figure 3 shows the comparisons of the temporal 
surface elevation of the solitary wave shown in Fig.l 
between the results computed by the model and the 
experimental results measured with the wave gauges 
installed at P.l, P.2 and P.3. The computed and 
measured profiles can not be quite distinguished up to 
the overturning location(P.3),nevertheless the 
formation of vortex was observed behind the end of 
submerged breakwater. This remarks that the numerical 
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results for the transformation of steep solitary waves 
over submerged obstacles are in excellent agreement 
with tank measurements up to overturning and the 
present model makes it possible not only to describe 
the transformation including overturning but also to 
predict the breaking point. 

Further, in order to demonstrate the accuracy of the 
numerical solution obtained by using the present 
scheme, we carried out some numerical simulations of 
solitary waves propagating over a gently sloping bottom 
under the same initial wave-height H/h and bottom slope 
tan e with Papanicolaou and Richlen's experiment(1988 ) . 
The breaker wave-height Hb /h was compared between the 
numerical results, where the breaker point is defined 
as the onset of overturning and experimental results by 
Papanicolaou and Richlen (for brevity P-R). Table 1 
shows the results of the comparisons. It can be easily 
recognized from this table that the breaker wave- 
heights computed with the present model agree with 
those obtained by P-R within the error degree of IX. 
This remarks that the breaking criteria could be 
established for the solitary waves without earring out 
experimental works in a wave tank. 
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Table 1   Comparison with the breaker wave-height 
between the present numerical results 
and experimental ones by P-R 

H /h tantf 
Hb/h 

Experi. (P-R) Numeri. 
0.2 0.0141 1.222 1.218 
0.3 0.0126 1.086 1.077 
0.4 0.0126 1.071 1.080 

4. DEFORMATION UP TO BREAKING AND REFLECTION 

Figure 4 shows, the propagation processes of 
solitary waves up to breaking points. While the wave 
profile at the breaker point shown in Fig.4(a) seems to 
be a spilling breaker, the wave profile shown in 
Fig.4(b) could be regarded clearly as a plunging 
breaker. From these results, we can be convinced that 
both breaker types of spilling and plunging occur even 
in the case except for sloping bottoms and depend on a 
parameter £s • defined by authors (Yasuda.Hara & 
Sakakibara 1990) as 

C = (R/h)/(H/h)** . (2) 

where H denotes the initial wave-height of an incident 
solitary wave, h the still water depth in front of the 
rectangular step and  R  its height. 

Further,  we  define  a  horizontally  asymmetric 
parameter pa 

fa 
= ^l^dX 

(3) 

as the breaker type index, since the breaker type could 
be supposed to correspond directly to horizontal 
asymmetry. Here, the integral region B in the equation 
is indicated in Fig.5 Figure 6 shows the relation 
between the values of the parameter fs • of incident 
solitary waves and the parameter pA calculated from 
their wave profiles at breaker points. 

Figure 7 indicates the backward propagation process 
of a reflected wave from a rectangular step . The 
reflected wave also seems to propagate as a steady 
solitary wave. Hence, we can easily define the 
reflection coefficient Kr of a solitary wave as a ratio 
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of a reflected wave 

of an incident wave-height H to a wave-height of the 
reflected solitary wave. Figure 8 shows the comparison 
of the relation of the reflection coefficient Kr to the 
relative step-height R/h between the computed results 
by the present model and the experimental ones by 
Seabra-Santos et al(1987) . In the figure, a solid line 
indicates the result calculated by Lamb's formula 

Kr = 
1 - ^1/(1 - R/h) 

1 + Vl/(1 - R/h) 
(4) 
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height R/h 

and a broken line denotes the theoretical result 
suggested by Yajima(1984) who solved the reflection 
problem of the KdV soliton using the inverse scattering 

method. 

*-i 1 + 8 
71/(1 - R/h) - 1 

^1/(1 - R/h) + 1 
1 (5) 

The  regression 
equation 

curve  is  drawn with  the  following 

Kr = 0AW(R/h)1• , (6) 

It is made . clear that the reflection coefficients 
obtained by the present model are independent of the 
amplitudes of incident waves as well as both the 
results of Lamb and Yajima, although they reveal the 
intermediate characteristics between eq.(4) and eq.(5). 
This remarks that the reflection coefficient of steady 
waves from a step is almost independent of the order of 
their nonlinearity but mainly depends on the relative 
step-height R/h alone. 

5. BREAKING CRITERIA 

Figure 9 shows the relation between the wave-height 
H/h of incident  solitary wave of which front face 
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overturns or not on a step and the relative step-height 
R/h. The solid line indicates the limiting wave-height 
H0/h of the solitary wave which can be transmitted 
without breaking. The limiting wave-height is almost 
inversely proportional to the step-height. From the 
relation between H/h and R/h, the value of the critical 
step-height comes to light against each incident 
solitary wave which propagates over the step without 
breaking. 

Figure 10 shows the breaking criteria of a solitary 
wave over a step, that is, the relation of the crest- 
height at the onset of breaking n^/d and the limiting 
wave-height Hc/d to the relative step-height R/h. Here, 
d is the water depth on the step and is equal to h-R. 
It should be noted that the value of r?b/d is almost 
constant and is nearly 0.9, independently pf the step- 
height. This remarks that the solitary wave having the 
crest-height under about 0.9 does not break on the 
step, even if the crest-height exceeds 0.78 which is 
the maximum crest-height of the steady solitary wave on 
a flat bottom. The solitary wave having the crest- 
height between 0.78 and 0.9 suffers fission on the 
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step, instead of breaking. 

6. CONCLUDING REMARKS 

It is verified through carefully controlled 
experiments that the present model enables us to 
compute very accurately the transformation of a steep 
solitary wave leading to breaking. Many numerical 
simulations using the model yield the breaker criterion 
and reflection coefficients of steep solitary waves 
over a step and further make clear the 
characteristics of reflected waves consisting of the 
positive  solitary wave from the submerged breakwater. 
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