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A NUMERICAL METHOD OF SOLITARY WAVE FORCES 
ACTING ON A LARGE VERTICAL CYLINDER 

Takumi Ohyama 1 

ABSTRACT 

Solitary wave forces acting on a large vertical cylinder are calculated using a time- 
stepping method which improves upon the conventional boundary element approaches. 
The effect of this improvement on the numerical solution is a more realistic solitary 
wave profile. Nonlinear effects on the solitary wave forces are investigated by com- 
paring the numerical results with the first approximations given by Isaacson. The 
first approximation for overturning moment is underestimated remarkably when the 
incident wave height is relatively high. 

1. INTRODUCTION 

In order to design coastal or offshore structures, accurate prediction of wave forces 
is necessary. In general, the incoming wave height considered during design is sub- 
stantial, so that the nonlinear wave effects cannot be ignored and the linear potential 
theory may not predict realistic values of wave forces. Among various numerical 
studies applied to this problem, the methods of approach may be classified into two 
groups. One approach is based on a perturbation method. Using Stokes' wave theory, 
second approximations for wave forces acting on a large vertical cylinder have been 
recently introduced by many researchers. For example, Hunt and Buddour (1981) 
gave the solution for deep water, and Eatock Taylor and Hung (1987) attempted to 
derive the definite solution for arbitrary water depth, However, this type of approach 
cannot be directly extended to higher-order expansions because of difficulties in the 
treatment of the free surface condition and the nonlinear radiation condition. 
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The other approach is a time-stepping method in which the boundary integral 
equations based on Green's theorem are solved at successive time steps. In this 
approach, the complete boundary value problem of velocity potential is considered 

without using the assumption of weak nonlinearity. For example, Isaacson (1982) 
applied this boundary integral equation method to the problem of nonlinear wave 
scattering around three-dimensional bodies. A similar method was proposed by 
Nakayama and Washizu (1981) for two-dimensional sloshing problems. However, the 

potential values on free surfaces were not estimated accurately in the time-stepping 
procedure of these conventional methods. 

This paper studies interactions between a solitary wave and a large vertical cylinder 
using a newly developed numerical method. The proposed technique treats the in- 

teraction as a three-dimensional transient problem, and it improves the time-stepping 
procedure of the conventional boundary element methods. The effect of the im- 

provement on the numerical solution is investigated by fundamental examinations. 
Nonlinear effects on wave forces exerted by a solitary wave on a circular cylinder are 
discussed by comparing the numerical results with first approximations given by Isaac- 
son (1983). The results obtained from this study may be applicable to the design of 
coastal structures in shallow water. 

2. THEORETICAL FORMULATION 

2.1 Boundary Integral Equations 
Consider a three-dimensional fluid region U as shown in Fig. 1. The region is 

enclosed by the free surface Sf, the body wetted surface Sy, the wave generating 
boundary Sc, the wall boundaries SWi, Sw2, SW3, and the seabed Ss. The bound- 
aries, 5c Swi, S\V2, and SyK3, are located sufficiently far from the body so that the 
diffracted waves will not reach these boundaries during the duration of computation. 

The fluid is assumed to be incompressible, inviscid and irrotational, so that the fluid 
motion can be described by a velocity potential (j>. The velocity potential can be 
given as the solution satisfying the following governing equation and the associated 
boundary conditions: 

V20 = O   (inQ), (1) 

d<j>ldn = 0    (on Sfl, SW1, SW2, SW3), (2) 

d^ldn = 0    (on Sv), (3) 

d<j>/dn = -d<l>/dx = -U(z,t)    (on Sc), (4) 

d(f>/dn = nz{drifdt)    (on SF), (5) 

d(j}/dt + (1/2)(V0)2 + g?j = 0    (on SF), (6) 
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in which n and nz are the direction and the ^-component of outward unit normal 

vector n defined on the boundary surfaces, respectively, and r\ is the free surface el- 
evation above the still water level. U in Eq. (4) denotes the water particle velocity 
in the ^-direction of the solitary wave given by the analytical solutions. Equation 
(1) corresponds to the continuity equation of the fluid motion. Equations (2) and 
(3) relate to the impermeable conditions on the seabed and the walls and the body 
surface, respectively. In generating waves, the still-water condition is applied as an 
initial condition, and the the kinematic condition as indicated in Eq. (4) is imposed 
on Sc. Equations (5) and (6) represent the kinematic and the dynamic conditions 
on Sp, which are considered to be nonlinear, 

Pig. 1 Coordinate system. 

Applying the second form of Green's theorem over the closed surface 5 containing 
the fluid region fl, a boundary integral equation is introduced in which the boundary 
values of the potential tj> are related to those of the normal derivative d<f>/dn. The 
potential <f>(P) at the point P(xp, yp, zp) which lies on S is expressed as 

^=smJs im £(p-Q) - d^iQ) G(P' Q)h (7) 

where Q(XQ, yg, zq) is a point lying on S where the integration is performed and G 

represents a Green function.   a(P) denotes a coefficient calculated by 

4P) -I. -~ds 
SrUS0USW3USv 0n 

(8) 

The Green function involved in Eq. (7) is chosen to account for the symmetry about 
the boundaries, SB, Swi, and Swz, such that 

G(P, Q) = 1 + £ f, (9) 
ro 



SOLITARY WAVE FORCES 843 

To 

(10) 

r2 = J(Cxy + (DvY + (Cz)i, r3 = J(Cxy + {Dyf + {Dz)\ 

n = sJ{Dxf + [Cyf + {Czf, rb = <J(DxY + (Cy¥ + (DzY, 

re = J(Dxy + (Dvy + (Czy, r, = y/(Dxf + (Dy)* + (D,y>, 
Cx = xp - xq, Dx — xp +XQ - 2XL, 

Cy = yp - yq, Dy = yP + yQ - 2YL, 
Cz = zP - zq, Dz = zp + zq + 2h, 

in which Xi, and YL are the length and the width of the fluid legion, respectively, as 
shown in Fig. 1. This Green function satisfies dGjdn = 0 on Swi, Sw2 and S^, so 
that the integrals over these boundaries can be excluded from Eq. (7). Substituting 
Eqs. (2), (3), (4) and (5) into Eq. (7), the following integral equation is introduced: 

0(P) = __L.(/_ $y-ds- I   Gnz^jds+ [   GUds],        (11) 
a(P) Sp US'cUS'iy3 \JSy dt sc 

The dynamic condition on Sp can be transformed into another integral equation 
by applying the method of weighted residuals. Substituting Eq. (5) into Eq. (6) 
and integrating it over Sp after multiplying both sides by a weighting function w, the 
following integral equation can be obtained: 

[?KH(S)'+(fir+(im
+4'=°<    <i2> 

where (X, Y) is a local coordinate system on the surface plain normal to the vector 
n as shown in Fig. 2. 

J Sp 

te. 
Boundary Surface 

O" x 

Fig. 2 Local coordinates on the free surface. 

2.2 Spatial Discretization of Integral Equations 
The boundary surfaces, Sp, So, Swi, and Sv, ate discretized into finite numbers 

of triangle elements. The local coordinate system (X, Y) is defined as indicated in 
Fig.3 over each element. In this figure, jl, j2, jZ are nodal point numbers comprising 
the J-th element, and R denotes a point on the element. Representing the variables 
of <f>, i), U and w as Y, the values of T and dT/dt on R can be written as 

r = NTjrj,   rTj = {TjUvj2,r]3}, (13) 
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'^r^ fOL \ 'dT\ . (dA (14) - - NTj{Tt)j,   (rS = i v Qt)ii> v &t Jj2, v at )M, 

in which N j represents interpolation function vector.   If linear distributions of F and 
dT/dt over the element are assumed, Nj can be expressed as 

NTj=(l/Sj){S3l,Sj2,S]3}, (15) 

where Sji, 5,2 and Sj3 are denned in Fig.3 and Sj is the area of the J-th element 
(= Sji + Sj2 + Sj3). 

j2 \0,z    "it j3 

Fig. 3 Definition sketch in the J-th element. 

Using the expressions of Eqs.   (13) and (14), the integral equation (11) is trans- 

formed into 

M Mf Mp+Mc 

J=l 3=\ J=MF+1 

,N), 

AU= f   Nj^-ds,     B,j= (   NjGds, 
Js,        on Jsj 

(16) 

(17) 

(i =1,2, 

8G 
ISj        dn ' JSJ 

in which M and N are the total numbers of triangle elements and the nodal points, 
respectively. M is made up of Mp elements over Sp, Mo elements over So, My 

elements over Sy, and Mw elements over Sw3- The surfaces are treated in order 
SF, SO, Sy and Sw3 as J increases from 1 to M. The vectors, A;j and .B;j can 
be calculated numerically, even when i coincides with jl or jl or j3. Numerical 
integrals over all the elements, however, may require time-consuming computational 
efforts. Therefore, the calculations of An and Bu are simplified by assuming those 
values to be constant over the J-th element, when i ^ jl nor j'2 nor j3.   Thus 

-^(Sr).-^.    Bij-^GuE    (i*jl,j2,j3), 3  \dnJiJ 

ET = (h 1, 1), 

(18) 

(19) 
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where (dG/dn)ij and G;j are the corresponding values at the center of gravity in the 

•7-th element. 
Substituting Eqs. (13) and (14) into Eq. (12), we obtain 

JZi us, 2    Js, 

+ ^{(<W2 + Wy)2}, /   Njds + g I   NjNTjdsr,j}=0. (20) 
iK '•'JS, JSj 1 

The velocity squared on the surface plain, {(<J>X)
2
 + (<J>Y)

2
}J, is assumed to be constant 

over the J-th element.   That is, 

_    1    <)4>3l<t>j2 4>j2<t>j3 <j>j3<t>}l 1 
Sj\ tan Qjs     tanfyi     taiifl,^/' 

(21) 

The integrals involved in Eq. (20) can be calculated analytically and may be trans- 

formed into the form 

E7iWi = 0, (22) 
i=i 

where Njr is the number of the nodal points on the free surface,   -yj involves <pj, 
(d<j>/dt)j, r/j, (dri/dt)j    (j = 1,2, • • •, Np) as unknown variables (see Ohyama, 1989 
b).   The arbitrariness of the weighting function u leads to the equation 

7j=0        (j = 1,2, ••-,#/). (23) 

2.3 Time-Stepping Procedure 
The discretized equations (16) and (23) are solved simultaneously for successive 

time steps to estimate the wave motion transition. The surface elevation and the 

velocity potential at the rc-th time step, »/") and <f>^"\ are given as 

in which A?j'n' and A</>("' represent the increments of J) and <j> during the time incre- 
ment At, respectively. Using Taylor expansions around the corresponding values at 
the (n — l)-th time step and neglecting the higher order terms with respect to At, 
(9rj/3t)(n) and (d<j>jdt)^ can be expressed as 

[dt>     ~    At        (9t;       ' (25) 

{dt' At        (dt' At    (dz' 
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It should be noted that Taylor expansions, with respect not only to time but also to 
spatial displacement, must be applied to the estimation of the potential values on Sp. 
The last three nonlinear terms on the right-hand side of Eq. (26) correspond to the 

change in location of the nodal point on Sp. In the method proposed by Nakayana 
and Washizu (1981) for two-dimensional sloshing problems, only the expansions with 
respect to time were considered, so that these nonlinear terms were entirely neglected. 
Isaacson (1982) also omitted the effect of spatial displacement from the time-stepping 

procedure. However, the partial effects were taken into account in a recent paper 
(Isaacson and Zuo, 1989). 

Substituting Eqs. (24), (25) and (26) into Eqs. (16) and (23), the linear algebraic 
equations for A<j>n' (j = 1,2, • • •, N) and AT]J' (j = 1, 2, • • •, Np) can be obtained. 
The quantities associated with the boundary surface profile, Sj, {nz)j, Aij, Bij, and 
so on, are unknown when solving the equations at each time step, since Arn1 are in- 
volved in the equations as unknown variables. Thus, in order to obtain the successful 
solutions associated with the corresponding free surface profile, the iteration proce- 

dure is applied using the surface profile at the previous time step as the initial profile 
(see Ohyama, 1985).  It usually takes two or three iterations to obtain the convergence. 

3. ACCURACY AND FUNDAMENTAL EXAMINATIONS 

Fundamental examinations were carried out to confirm the validity of the proposed 

method. Solitary waves with various wave heights, Ho, were generated numerically 
in a three-dimensional wave channel with a constant depth h and a constant width 

YL. In the computations, the still water condition (tf> = i) — 0) inside the region 
was considered as an initial condition, and the third approximation given by Fenton 
(1972) was applied to the velocity U imposed on Sp- The numerical results were 
compared with the third approximation in terms of the generated wave profile and 
the hydrodynamic pressure. Once the velocity potential <j> is given at successive time 
steps, the pressure p can be obtained from the Bernoulli equation 

p = -p{(d*/dt) + (l/2)(V^)2 + gz], (27) 

where p is the fluid density. The results for the case of Ho/h = 0.4 are shown in 

Figs. 4 (a) and 4 (b) together with the corresponding approximations. In this 
calculation, Xjj/h and Yijh were fixed at 14.0 and 2.1, respectively. According to 
the results of the previous study for a two-dimensional numerical model (Ohyama, 
1989 a), the maximum horizontal distance between the neighboring nodal points on 
Sjr, Al, and the time increment At were varied with Ho/h. In the case of Ho/h = 0.4, 
Al/h and Aty/g/h were set at 0.7 and 0.4, respectively. As shown in, Figs. 4 (a) 

and 4 (b), the agreements between the numerical result and the third approximation 
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aie fairly good, whereas the flist approximation predicts a remarkably larger value for 
hydrodynamic pressure under the still water level. It may indicate that the proposed 
method can well predict the wave motion and the induced force even in the case of a 

relatively high wave height. 

(a) Generated solitary wave profile (y/h = 0) 

(b) Distribution of hydrodynamic pressure under the wave crest 
Fig. 4 Comparisons with the corresponding approximation for Ho/h = 0.4 ; 
Oi numerical result; , third approximation; — - —, first approximation. 

Additional examinations were performed to ascertain the effect on the numerical 
solutions of taking into account the nonlinear terms in Eq. (26). Figure 5 shows 
the numerical result of the generated wave profile with Ho/h = 0.4, together with the 
third approximation. The results calculated by the proposed method and those by 
the conventional method, in which the nonlinear terms in Eq. (26) are neglected, are 
denoted by circles and triangles, respectively. It should be noted that the proposed 
method can eliminate the numerical error accumulation which occurs in the conven- 
tional analysis. 
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x/h 
Fig. 5   Generated solitary wave profile with H0/h = 0.4 ; 

Oi numerical result taking into account the nonlinear terms in Eq. (26); 
A, numerical result neglecting the nonlinear terms in Eq. (26); 

—— , third approximation given by Fenton, 1972. 

4. NONLINEAR EFFECTS ON SOLITARY WAVE FORCES 

First approximation for the solitary wave diffraction around a circular cylinder was 
already given in closed form by Isaacson (1982). According to this approximation, a 
maximum force coefficient, Cp, and a maximum overturning moment coefficient, CM, 
are conveniently described by the single number (a/h)\/Ho/h, in which Cp and CM 

are defined as 
CP 

pgH0ah CM = 
Mr, 

pgH0ah2' 
(28) 

turning moment, respectively, and a is the cylinder radius. However, the first approx- 
imations were introduced on the assumption of a small wave height. Thus, nonlinear 
effects on solitary wave forces acting on the cylinder may be discussed by comparing 
the numerical result with the first approximation. 

Figure 6 shows the free surface elevation computed by the proposed method in 
the case of (a/h)\/F0/h = 2.0 and ffo/h = 0.4, when the horizontal force acting on 
the cylinder is at the maximum. Only the half side of the fluid region was consid- 
ered in the calculation because of the symmetry of the circular cylinder. In the case 
indicated in Fig. 6, the surfaces S_p, So, Sy and Sw3 were discretized into 846, 120, 
112, and 176 elements, respectively, and the total number of the nodal points was 680. 

The corresponding numerical results of the temporal variations of the horizontal 

force Fx and the overturning moment My are indicated in Figs. 7 (a) and 7 (b), 
together with the first approximation. The abscissa in these figures represents nondi- 
mensional time, where t1 denotes time measured from the instant when the crest of 
the incident wave passes the center of the cylinder. The calculation was carried out 
for ffo/h being 0.1 and 0.4. In the case of ffo/h = 0.1, the agreements between 
the numerical result and the first approximation are fairly good for both the horizon- 
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Fig. 6 Free surface elevation with (a/h)^jH0/h = 2.0 and H0/h = 0.4. 

tal force and the overturning moment. For Ho/h = 0.4, however, the prediction of 
the maximum overturning moment is remarkably larger than the first approximation, 

whereas the difference in the maximum horizontal force may not be notable. The 
reason why the prediction of the overturning moment for Ho/h = 0.4 is larger than the 
first approximation may be explained by the following facts. First, Figure 8 shows 
the distribution of hydrodynamic pressure in a horizontal cross section when the hor- 
izontal force is at the maximum. For Ho/h = 0.4, the pressure over the cylinder 
surface is found to be smaller than the value predicted by the approximation. This 
characteristic is the same as the progressive solitary wave, as indicated in Fig. 4 (b). 
Second, the proposed method takes into account the pressure distribution above the 
still water level, whereas it is neglected in the first approximation. These two facts 
have contrary effects on the prediction of the horizontal force, so that the numerical 
results of the horizontal force may differ slightly from the approximation, even for 
the case of Ho/h = 0.4. Furthermore, the second fact explains that the point of the 
resultant force shifts upward as the incident wave height increases. Thus, compared 

to the approximation, the proposed method predicts a larger value for the overturning 
moment. 

Figures 9 (a) and 9 (b) show the variations of Cp and CM with (a/h)\/Ho/h, 
respectively. When the value of (a/h)^/H0/h is small, the differences between the nu- 
merical result and the first approximation are not significant, even for the overturning 
moment. As this parameter (a/h)\/Ho/h becomes larger, however, the approximation 
predicts a much smaller magnitude of overturning moment. The prediction obtained 
from the numerical calculation shows a 40% larger value than the approximation for 
(a/h)^H0/h = 3.0 and Ho/h = 0.4. 
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T-4. 

•3 

Fx 
PflH.ah 

—--: 1st approximation 
2.      A : Ho/h-0.11 Numerical 

o : Ho/h-0.4 I results 

J-2. 

(a) horizontal force 

T2.0 
My 

p0H.ah! 

1.5 

—: 1st approximation 
1.0     A : Ho/h'0.11 Numerical 

o : Ho/h-0.4 I results 

-1.0 
(b) overturning moment 

Pig. 7 Temporal variations of horizontal force and 
overturning moment for (a/h)^/Ho/h = 2.0. 

WAVE 

2.0      1.0      0.0 

pgHo 

—: 1st approximation 
A : Ho/h>0.1 i Numerical 
o : Ho/h-0.4 I results 

0.0      1.0      2.0 
P 

pgHo 

Fig. 8 Distribution of hydrodynamic pressure at z/h = -0.1 
when Fx is at the maximum with (a/h)-yH0/h = 2.0. 
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«.                   A 
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o            8     o 

2.0 / o 

1.0 
A —: 1st approximation 

A : Ho/h"0.1 i Numerical 
0 : Ht>/h-0.4 1 results 

0.0 I 
2.0        _      3.0 

3. [Hi. 
hV h 

(a)CF 

—: 1st approximation 
A : Ho/h-0.11 Numerical 
o : Ho/h-0.4 ' results 

0-0 1-0 2.0        ^3-      3.0 
a /Ho 
hV h 

(b)CM 

Fig. 9 Variations of Cp and CM with (a/h)\/Ho/h. 

5. CONCLUSION 

A numerical method has been developed foi simulating solitary wave diffraction 
around large structures. The proposed method is based on the nonlinear potential 
theory, and it improves the time-stepping procedure of the conventional boundary 
element methods to provide greater accuracy. The effect of the improvement on the 
numerical solution has been shown by the simulation of a more realistic solitary wave 

profile. 
Comparisons have been carried out with the first approximation for the horizontal 
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force and the overturning moment, acting on a circular cylinder. The first approxi- 

mation gives reasonable results when Ho/h is about 0.1. When Ho/h — 0.4, however, 

the same approximation remarkably underestimates the overturning moment. 
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